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Abstract: We consider an integrated vendor-buyer supply chain production-inventory model with a vendor 

and a buyer in this paper. The vendor produces and supplies a product to the buyer so that the buyer can 

meet his demands. The buyer adopts a continuous review and fixed order lot size policy to deal with 

stochastic demands. All unmet demands are backordered. A lot-for-lot replenishment policy is implemented 

between the two parties. This implies that upon receiving an order from the buyer, the vendor will 

immediately start a production run to produce the exact quantity requested by the buyer. The buyer’s 

inventory level is continuously monitored and when it falls to the buyer’s reorder point, an order will be 

placed, and the information is sent immediately to the vendor. A production run will be started at the 

vendor as soon as the ordering information is received. The vendor’s production system is assumed to be 

subject to random breakdowns. We assume once a breakdown has taken place during a production run, it 

will require a significant amount of time to perform a correct maintenance activity. Hence, a no-resumption 

policy is adopted by the vendor. Under this policy, when a breakdown occurs before the desired production 

lot size is produced, the vendor will order at once the difference between the desired production lot size 

and the on-hand inventory from external sources. These items must be received by the end of a production 

run to allow the vendor to ship the planned order quantity to the buyer. An iterative solution procedure is 

developed to obtain a near-optimal solution for the order quantity and the reorder point. 

 
Key words: Supply chain, stochastic inventory, random machine breakdown.  

 
 

1. Introduction 

A single-manufacturer (vendor) and single-buyer integrated production-inventory model has received a 

significant amount of attention over the last two decades. Currently, it remains as a popular model because 

it is a basic building block for studying more complex supply chain problems. Companies in today’s 

competitive market place have recognized that inventories across the entire supply chain must be more 

efficiently managed through better collaboration and coordination among all parties involved. The benefit 

will be in a significant reduction of the cost and the lead time without sacrificing customer service. In this 

paper, an integrated vendor-buyer supply chain production-inventory model with stochastic demands is 

considered. This supply chain consists of one vendor who produces a product to supply to a buyer. The 

buyer is facing stochastic demands and is adopting a continuous review, fixed ordering lot size inventory 

policy, known as a (Q, r) policy, to manage his inventory. Based on this policy, a reorder point r and the order 

lot size Q are to be determined. Since the inventory is monitored continuously, when the inventory level falls 
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to or below the reorder point level r, an order of Q units will be placed. Upon receiving an order from the 

buyer, the vendor will immediately start a production run to produce the exact quantity requested by the 

buyer. After a production runt is completed, the entire lot will be shipped to the buyer. This is called the 

lot-for-lot policy. During a production run, the demand of the product will be fulfilled by buyer with the 

inventories kept at the reorder point level. Hence, in this case, the lead time is composed of the production 

run time, the transportation time, and the non-production time such as production setup time. In order to 

simplify our subsequent derivations, we assume that the transportation and non-production time are 

negligible, or they can be prorated into the production time. Since the demand is considered as a random 

variable, it is conceivable that the demand during the lead time is also a random variable. Therefore, when 

the lead time demand exceeds the reorder point, shortages will occur. In this paper, we assume all shortages 

are backordered. Furthermore, the production system is assumed to be subject to random breakdowns. In 

most single vendor single buyer production-inventory models, the production system is assumed to 

function flawlessly during the entire production run, and thus no disruptions will occur. In reality, random 

breakdowns could occur in any production systems. In our model, we consider a case when a production 

run begins, due to a setup, the production system will be in the normal condition. But as time goes on, 

machine breakdowns may occur before the end of the production run. When that happens, a 

time-consuming corrective maintenance activity will be carried out right away. An exponential distribution 

is used to model the time-to-breakdown random variable. Groenevelt et al. [1] investigated the effects of 

random breakdowns and corrective maintenance on the economic batch sizing decisions. Two inventory 

control policies were examined in their models, namely, the no-resumption (NR) and abort-resume (AR). 

The NR control policy assumes that after a breakdown has occurred, the interrupted production is not 

resumed until all the on-hand inventories are depleted, whereas the AR control policy assumes that if the 

current on-hand inventory is below a certain threshold value when a breakdown occurs, then this 

production run is immediately resumed after a corrective maintenance with a negligible repair time is 

completed. Their research results indicated that this control structure is optimal among all stationary 

policies and offered the exact optimal and closed form approximate lot sizing formulas and bounds on 

average cost per unit time for the approximations. In this paper, we consider an integrated vendor-buyer 

stochastic production-inventory model in which the vendor’s production system is subject to random 

breakdowns. We assume once a breakdown has taken place during a production run, it will require a 

significant amount of time to perform a correct maintenance activity. Hence, a no-resumption policy is 

adopted by the vendor. Under this policy, when a breakdown occurs before the planned production lot size 

is produced, the vendor will order at once the difference between the desired production lot size and the 

on-hand inventory from external sources. The vendor will have to pay a higher unit variable cost for these 

items. They must be received by the end of a production run. This will allow the vendor to ship the planned 

order quantity to the buyer. Our goal is to obtain a solution so that we can achieve a balance between the 

vendor’s costs including the production setup cost, the production cost, the inventory carrying cost, the 

corrective maintenance cost, and the cost paid to external sources, and the buyer’s costs which includes the 

order setup cost, the inventory carrying cost, and the backorder cost.  

Many results can be found in the literature on supply chain inventory models dealing with the integration 

and collaboration between a vendor and a buyer over a two-level supply chain with either deterministic 

demands or stochastic demands. Since the problem studied here considers stochastic demands, we only 

provide a brief review on those papers that dealt with stochastic demands. Aloulou et al. [2] gave an 

extensive review on those results obtained from various stochastic lot-sizing models since year 2000. Pan 

and Yang [3] considered a single-vendor and single-buyer model in which the lead time is controllable, and 

the entire order lot size is delivered by multiple shipments. Although Ben-Daya and Hariga [4] studied a 
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similar model, they did take into account a situation where the lead time is a linear function of the 

production lot size. Moreover, their model included a non-production time as a part of the lead time. Ouyang 

et al. [5] investigated an integrated vendor-buy inventory model with a controllable lead time and stochastic 

demands. In a separate paper, Ouyang et al. [6] extended the model to incorporate the quality improvement 

cost. Their model assumed that during a production run, the vendor’s process may go out of control with a 

fixed probability each time another item is produced. Once the process is in the out-of-control state, 

defective items will be produced until the end of the production run. Lin [7] studied an integrated 

vendor–buyer inventory model with controllable lead time and discounted backorder price discount. Two 

common investment cost functions to reduce ordering cost are investigated. Chaharsooghi et al. [8] 

proposed a coordination vendor-buyer model with a stochastic demand and lead time. They obtained 

conditions that can motivate both the vendor and the buyer to participate in a coordination 

production-inventory policy. Bahri and Tarokh [9] examined a seller-buyer supply chain model with an 

exponentially distributed lead time. Lin [10] considered a vendor-buyer model with an imperfect 

production process. A screening process is performed when the buyer receives a shipment. The probability 

distribution of the demand during lead time is unknown, except the mean and the variance. Vijayashree and 

Uthayakumar [11] studied a similar model to Ouyang et al. [5], but included multiple deliveries from the 

vendor to the buyer during a production run.  

All the studies mentioned above have not considered the vendor’s production system that is subject to 

random breakdowns. As a matter of fact, it was pointed out in Snyder [12] that the effect of random 

disruptions on the (Q, r) policy is not known. In this paper, we intend to propose a model to fill this existing 

gap in the literature. The paper is organized as follows: in the next section, we define notation used in this 

paper and give assumptions for the model. The description of the model is given in Section 3. The derivation 

of a solution approach is provided in Section 4. Finally, some concluding remarks are given in Section 5.   

2. Notation and Assumptions 

Before describing our model, we first provide the notation used in this paper as follows: 

D = annual demand, a random variable 

d = average annual demand, i.e., E[D] = d  

σ = the standard deviation of the annual demand 

p = the vendor’s production rate (units/year) 

K2 = the buyer’s fixed ordering cost per order 

K1 = the vendor’s fixed production setup cost 

h1 = the vendor’s cost for unit holding cost per year 

h2 = the buyer’s cost for unit holding cost per year 

π = unit shortage cost 

Q = order quantity (decision variable) 

r = reorder point  

k = safety factor (decision variable) 

L = replenishment lead-time 

X = demand during lead time 

Y = time-to-breakdown of the vendor’s production system 

λ = the parameter of the exponentially distributed r. v. Y 

a = fixed transportation cost 

b = unit variable transportation cost 

m = cost of a corrective maintenance  
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c = vendor’s unit production cost  

δ = vendor’s unit acquisition cost from an external source 

The assumptions made in this paper are given as follows: 

1) The product is manufactured by the vendor with a finite annual production rate p, and p > D. 

2) The annual demand is a random variable D with a mean d and a standard deviation σ. 

3) The lead time L(Q) is a function of the order quantity Q. 

4) The demand during lead time is a random variable with a finite mean dL(Q) and a variance σ2L(Q). 

5) The reorder point r is set equal to the sum of the expected demand during lead time and the safety 

stock. 

6) A continuous-review, fixed order lot size policy is adopted by the buyer.  

7) A lot-for-lot production policy is adopted by the vendor. 

8) The vendor’s production system is subject to random breakdowns during a production run. 

9) The shortages are fully backordered by the buyer. 

10) The time-to-breakdown is a random variable following an exponential distribution with a mean of 1/ 

λ. 

11) The vendor and the buyer have collaborated to derive a solution to minimize an integrated objective 

12) function including the vendor’s expected annual total cost and the buyer’s expected annual total cost. 

3. Model Description 

The supply chain model studied in this paper includes a vendor who produces a specific product to 

supply to a buyer, and a buyer who adopts a continuously reviewed, reorder-point, and fixed order lot size 

policy to fulfill his normally distributed demands with a mean of d units per year. Based on this model, the 

buyer’s inventory level is continuously monitored. Whenever the inventory level falls to the reorder point r, 

an order of Q unit will be placed by the buyer, and the vendor will receive the ordering information 

immediately. Upon receiving an order, the vendor then starts a production run with a finite production rate 

of p, where p >> D. Since a lot-for-lot policy is adopted, the vendor will only produce a lot size of Q units. If 

no breakdowns occur during a production run, then the entire lot will be delivered to the buyer as soon as it 

is completed. Note that during a production run, the buyer’s inventory may continue to decrease due to 

market demands. However, the buyer has kept in stock r units of the product to meet demands occurring 

during this period. We assume the transportation time of a production lot is prorated into the production 

time. This implies that the lead time of the buyers is L = Q/p. If the total demand during lead time is higher 

than the report point, shortages will occur. It is assumed that all shortages are fully backordered and will be 

filled as soon as the next shipment arrives at the buyer facility. A sample path of the model is depicted in Fig. 

1.  

In addition, we assume that at the beginning of a production run, a setup will take place that will keep the 

production system in a normal condition. The production system is subject to random breakdowns during a 

production run. Therefore, when a breakdown occurs, a corrective maintenance will be carried out right 

away to restore the system back to the normal condition. However, since the time to complete the corrective 

maintenance includes the time for the diagnostic process, ordering and waiting time for spare parts, and the 

time for actual repair work, we assume it is required to spend a significant amount of time to complete the 

corrective maintenance work. Consequently, not only the vendor will not be able to ship Q units to the buyer 

by the end of the production run, but also the buyer may have to wait for a long period of time to receive a 

shipment of Q units from the vendor that will result in a substantial shortages and loss of customer good 

will. Hence, we assume that the vendor has agreed to deliver a shipment with a size of Q units to the vendor 

when an order is placed. If a breakdown occurs before the end of a production run, the on-hand inventory 
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level of the vendor will be less than Q. In such a case, according to the agreement, the vendor will have to 

make up the remaining amount by ordering them from external sources. The vendor must pay for a higher 

unit variable cost in comparison to the unit production cost when a unit is produced in-house. A sample 

path of the model for this case is depicted in Figure 2. In summary, our analysis of the model will be divided 

in two cases depending on whether a breakdown occurs during a production run or not. Next, we will 

derive the objective function which represents the expected annual total cost for this supply chain model.  

Case 1: Y ≥ Q/p 

In this case, no breakdowns occur during a production run. Thus, the production run time is Y = Q/p, and 

the lot size of Q will be shipped to the buyer. Because the expected annual demand is d, the length of each 

cycle for the integrated supply chain is approximated by Q/d. A replenishment order is placed whenever the 

buyer’s inventory level falls to the reorder point r. At the end of the lead time, the order quantity of Q units 

will arrive at the buyer’s facility before the buyer’s inventory drops down to zero. However, a total number 

of demands higher than r may occur during the lead time. As a result, shortages will occur before the arrival 

of a new order. Since the lead time demand follows a normal distribution, it follows that the lead time 

demand X has a probability density function f(x) with a finite mean of dL and a standard deviation σ. The 

reorder point r = expected demand during lead time + safety stock (SS), and can be expressed as follows:  

 

 
 

    
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Fig. 1. A sample path of the system for case 1. 

 

In the above equation, k represents the safety factor and satisfies P(X > r) = P(Z > k) = θ, and θ denotes the 

allowable stock-out probability during the lead time. The safety factor k can be determined from the 
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following equation: 


  ( ) ( )
k

k z dz  where ( )k denotes the complementary cumulative distribution 

function of a standard normal distribution that yields the probability of stock-out during a replenishment 

cycle at the safety factor k, and ( )z  represents the probability density function of the standard normal 

random variable z. The expected number of units short per cycle is given by  




    1[ ( )| ] ( ) ( ) ( )
r

E n r Y y x r f x dx L k                           (1) 

where ( )k is the unit linear loss integral and is given as follows: 

  


     ( ) ( ) ( ) ( )
k

k z k z dz k k k , and     /k r dL L  

Since the demand during lead time is normally distributed, by following the normal approximation, the 

buyer’s expected cost per cycle for this case can be expressed as follows: 

  
  

                  

2 2
1 2 2[ | ] ( ) ( )

2 2

h Q h QQ Q Q Q
E TCB Y y K r dL k L K k k

d d p p
     (2) 

Next, we calculate the vendor’s expected total costs for a cycle. During a production run, the vendor will 

incur the following costs: 

1) the production setup cost is K1, 

2) the inventory holding cost can be computed as (h1Q2)/2p, 

3) the cost for corrective maintenance is 0,  

4) the production cost for the product is cQ, and 

5) the transportation cost is a+bQ. 

We can obtain the vendor’s expected total cost per cycle as follows: 

     21
1 1[ | ]

2

h
E TCV Y y K Q cQ a bQ

p
                                (3) 

Hence, the expected total cost per cycle for the supply chain can be calculated as follows:  




    

 
          

 

1 1 1

21 2 2
1 2

[ | ] [ | ] [ | ]

1
( ) ( )

2

E TC Y y E TCB Y y E TCV Y y

h h h k Q Q Q
K K a Q c b Q k

p d d p p

                (4) 

The expected cycle time of Case 1 can be calculated as follows:  

 

 1[ | ]
Q

E T Y y
d

 

 

Case 2: 0 < Y < Q/p 

In this case, a breakdown has occurred before a production run for a lot size of Q units is completed. Since 

only pY units is produced, the remaining Q ‒ pY units will be ordered from external sources with a cost of $δ 

per unit which is higher than the regular unit production cost $c per unit. Note that in this case, only the 

vendor’s cost will be different. First, we calculate the inventory carried by the vendor during a cycle as 

follows:  
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 
     
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Then we can obtain the vendor’s expected total cost per cycle as follows: 
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Fig. 2. A sample path of the system for case 2. 

 

The buyer’s expected total cost per cycle for this case is identical to the one of Case 1. The expected cycle 

time of this case is also identical to the one of Case 1. The expected total cost per cycle for this case of the 

supply chain can be calculated as follows: 


  

    

             

2 2 2

2 21 2 2
1 2 1
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( ) ( ) ( )
2 2

E TC Y y E TCB Y y E TCV Y y

h p h h k Q Q Q
K K a m h Q cp p y y b Q Q k

d d p p

        (5) 

Next, we derive the expression for the objective function of the integrated model. First, we obtain the 

expected cycle time in year as follows:   


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The expected total cost per cycle can be found as follows: 
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After some algebra, we obtain the following equation:  

 

   


  


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       
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    
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/ / / /1 1
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22 2

[ ] (1 ) (1 ) 1

( )
2

Q p Q p Q p Q ph Q cp h pp Q
E TC A m e Q e e e bQ

p

h h k Q Q Q
Q k

d d p p

             (6) 

where A = K1 + K2 + a. 

The expected annual total cost can now be computed as follows: 
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               (7) 

 

After excluding the cost components not involving the decision variable Q, we can express the expected 

annual relevant cost as follows: 
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            (8) 

 

We can rewrite Z(Q, k) as follows: 
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If we examine the Hessian matrix for Ωi, i=1, … 5, with respect to Q and k, we can discover that some are 
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positive and some are negative. This implies that the objection Z(Q, k) is neither convex nor concave. The 

goal is to find a solution for Q, and k so that the objective function Z(Q, k) is minimized. In most real-life 

cases, often λQ/p is rather small. This allows us to use a Maclaurin series to approximate all exponential 

terms as follows:  

 

    
    

 
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/ 1
1

2
Q p Q Q

e
p p

 

 

After applying this approximation in (8), we obtain a new objection function as follows: 
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The first partial derivatives of the function Z(Q, k) are given as follows: 

 

 
  

 
   

         
   

1 32
2 2 2 2

12

( )

2 2 2

h p h kZ dA d m d k
h c Q Q

Q p d pQ p p
              (10) 

 

   
 



1

2 2
( )hZ d k

Q
k p pQ

                                      (11) 

In the next section, we provide some properties which allow us to obtain a near-optimal solution for Q 

and k that minimize the objection function Z(Q, k). 

4. Solution Method 

Since it is not easy to show the convexity of Z(Q, k), we will proceed to find some properties that allow us 

to obtain a near-optimal solution for Q and k that minimize Z(Q, k). First, we show that for a given value of k, 

an optimal solution of Q can be found despite the fact that the objective function Z(Q, k) is not a convex 

function of Q. 

Property 1. For fixed values of k, the expected annual relevant cost function Z(Q, k) is not a convex 

function of Q. However, an optimal solution of Q can be determined uniquely. 

Proof. The second-order partial derivative of Z with respect to Q can be obtained as follows: 

 

          
      

   

3 5 32
2 22 2 2

2 3 3/2

2 3 ( ) 2 3 ( )

4 4 4 4

h k h kZ dA d k dA d k
Q Q Q

Q Q Qp p p pQ
 

 

For a large value of Q, the first and the third term inside the parentheses of the above equation converge 

to zero. Thus, we can obtain that





2

2
0

Z

Q
for a large value of Q. In addition, we can show that 

2

2
lim 0
Q

Z

Q





. 

This implies that Z(Q, k) is not a convex function of Q. Next, we show that a solution exists. Equation (9) can 

be rewritten as follows: 

 
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 



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               

12
12 22

1 3/2

( )

2 2 2

h p h kZ d m dA d k
h c Q Q

Q p d p Qp p
                 (12) 
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The last three terms in the bracket of the above equation converges to zero for a large value of Q. This 

implies that 

 
2

2
1lim 0

2Q

h pZ d m
h c

Q p d p


 



 
      

  
 for  

2
2

1

h p m
h c

d p


     . Note if this condition is not true, 

it implies that   2
1 2 / /m p h h p d c        . Under such a circumstance, the vendor may choose not to 

produce the product in-house to avoid a huge cost for taking the corrective maintenance activity. Next, we 

examine ∂Z/∂Q when Q = 1. We first obtain  
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On one hand, if 





0
1

Z

QQ
, then 





0

Z

Q
 for all Q. This implies that Z(Q, k) is a strictly increasing 

function of Q. The optimal solution of Q can be selected as a minimum possible lot size of Q, say, Qmin. On the 

other hand, if 





0
1

Z

QQ
, then the first-order partial derivative ∂Z/∂Q changes from negative to positive 

only once in the interval 1 ≤ Q < ∞. Hence, a unique solution of the equation ∂Z/∂Q = 0 exits. Since the 

derivative ∂Z/∂Q denotes the slope of the function at Q under a give value of k, it is clear that the function 

Z(Q, k) is convex. Hence, an optimal solution can be found.  

Lemma 2. For a given value of Q, the expected annual relevant cost function Z(Q, k) is a convex function of 

k.  

Proof. This can be shown from the second partial derivative of Z(Q, k) with respect to k as follows: 

 
2

2

( )
0

2

Z d k

k pQ

 
 


, for all k 

 
Next, by using these properties, we develop an iterative procedure that is similar to the one used often in 

the literature for the classical continuous review (Q, r) problem. Frist, we obtain two equations for finding Q 

and k by solving ∂Z/∂Q = 0 and ∂Z/∂k = 0. This yields the following two equations 
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                           (13) 

 


  2( )

h Q
k

d
                                 (14) 

 

Now, we are ready to develop a solution procedure to obtain a near-optimal solution (Q*, k*) for 

minimizing the expected annual relevant cost Z(Q, k).  

Algorithm 1  

Step 1: Initialization Set   

Set i = 0. Set Q(0) = EOQ. If Q(0) < Qmin, set Q(0) = Qmin. Use (14) with Q(0) to compute k(0). 
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Step 2: Set i = i + 1. Check the sign of ∂Z/∂Q at Q = 1 using k(i-1). If the sign is non-negative, set Q(i) = Qmin. 

Otherwise, use (13) with Q(i-1) and k(i-1) to compute Q’.  If Q’ < Qmin, then Q(i) = Qmin; otherwise, Q(i) = Q’. Let ε1 

denote a small tolerance. If  ( ) ( 1)
1

i iQ Q  , go to Step 4.  

Step 3: Use (14) with Q(i) to compute k(i). Let ε2 denote a small tolerance. If  ( ) ( 1)
2

i ik k  , go to step 5; 

otherwise, return to Step 2. 

Step 4: Set Q*= Q(i) and k*= k(i-1) Stop. 

Step 5: Set Q*= Q(i) and k*= k(i). Stop. 

5. Concluding Remarks 

This paper considers an integrated vendor-buyer supply chain production-inventory model where a 

vendor supplies a product to a buyer. The buyer adopts a continuous review and fixed order lot size policy 

to deal with normally distributed demands. All shortages are backordered. A lot-for-lot replenishment 

policy is adopted between the two parties. The buyer’s inventory level is continuously monitored. Once the 

inventory level is falling to or under the buyer’s reorder point, an order will be placed, and the information 

is sent to the vendor immediately. Upon receiving an order, the vendor will start a production run. The 

vendor’s production system is subject to random breakdowns. We assume once a breakdown has occurred 

during a production run, it will require a significant amount of time to perform a correct maintenance 

activity. Therefore, a no-resumption policy is adopted by the vendor. Under this policy, when a breakdown 

takes place before the desired production lot size is produced, the vendor will immediately order the 

difference between the desired production lot size and the on-hand inventory from external sources. These 

units will be received by the end of a production run so that the vendor can ship the planned order quantity 

to the buyer. An iterative solution procedure is developed to obtain a near-optimal solution for order 

quantity and the reorder point. In this paper, the demand distribution is assumed to follow a normal 

distribution. As a future research direction, we can consider a case where the demand distribution is 

unknown but with a known mean and variance. In addition, we can study a case in which investment can be 

made to improve the reliability of production system. Furthermore, it is worth investigating a situation 

where the corrective maintenance is not time-consuming. Finally, we may also consider a case where 

defective items may be produced during a production run along with random breakdowns. 
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