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Abstract—The skyline search algorithm has recently 

emerged as an important technique in database research. 

Given a set of data points in a multidimensional database, such 

queries return points that are not “dominated” (detailed in the 

paper) by any other point. In practice, databases that require a 

skyline query usually provide numerous candidate dimensions, 

of which users are interested in only a few. As a result, queries 

are issued regarding various subsets of the dimensions and 

such queries are called subspace skyline queries. 

Using the conventional skyline algorithm to process these 

queries directly can be extremely ineffective. Additional 

algorithms and architectures have been added to improve 

search efficiency; however, such modifications can increase 

computational costs or necessitate an increase in data storage 

capacity. This paper proposes a novel index model based on a 

Gaussian function to enhance the performance of subspace 

skyline queries. Simulation results demonstrate the efficacy of 

the proposed tree in locating skyline points within a subspace. 

 
Index Terms—Database, skyline, tree structure. 

 

I. INTRODUCTION 

The skyline search algorithm [1]-[5] has moved to the 

forefront of database research due to its wide applicability in 

multi-criteria decision-making environments. Take for 

example the cell phone dataset in Fig. 1(a), which includes 

two attributes: the price (x axis) and weight (y axis) of cell 

phones. If a consumer were looking for a light, inexpensive 

cell phone, then cell phone F would be better than cell phone 

L because F is cheaper and lighter than L (i.e., F dominates 

L). Phone B is lighter but more expensive than phone F; 

therefore, these cell phones cannot be compared (i.e., 

incomparable). Skyline queries operate by locating all 

non-dominated data points. In this example, the skyline 

points include B, F, and G because these cell phones are not 

dominated by any other cell phones. The line connecting all 

skyline points is called the skyline. 

A major bottleneck in processing skyline queries is the fact 

that all of the data points must be loaded into the algorithm at 

least once, which means that the I/O costs can be 

astronomical [4]-[6]. The most common method [6], [7] of 

processing skyline queries is to first employ the R-tree 

[8]-[11] to index data points, as shown in Fig. 1(b). In this 

figure, similar data points are stored in the same node (i.e., 

the rectangle in Fig. 1(b)). Through the R-tree, the algorithm 
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knows that only the data points in the nodes intersecting the 

skyline (i.e. within the grey rectangle) are potential skyline 

answers. None of the other data points could be skyline 

solutions. In other words, obtaining skyline results requires 

only that the algorithm load data points from within the grey 

rectangle, which is far fewer than the total number of data 

points in the set. This significantly reduces the I/O costs of the 

overall algorithm. 
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(a) Original dataset.                  (b) An index result of the R-tree. 

Fig. 1. The cell phone dataset. 

 

Subspace skyline queries [12]-[17] are an important topic in 

skyline queries. To define a subspace skyline query, assume 

that the entire (the full space dataset) has d dimensions, and 

the algorithm obtains skyline results using only n (n<d) 

dimensions in the subspace rather than using all d dimensions. 

For example, a hotel database usually has more than five 

dimensions, such as room prices, room sizes, restaurant prices, 

hotel ranking, restaurant ranking, distance to the beach, 

distance to scenic spots, and distance to the airport. However, 

a user may only be interested in room price and distance to the 

airport, while another user would want to learn about room 

price, hotel ranking, and distance to scenic spots. Traditional 

skyline algorithms consider all dimensions, yet these two 

cases consider subsets of the dimensions, possibly resulting in 

entirely different skyline points. As a result, new algorithms 

must be derived for subspace skyline queries. 

The most intuitive method used to process subspace skyline 

queries is to build an R-tree of all data points in the entire 

space and then use this tree to search for the subspace skyline 

[12]. However, this method performs poorly because the data 

points in a single R-tree node are similar in the full space but 

not necessarily similar within the subspace (see Fig. 2). Fig. 

2(a) presents an R-tree constructed using a three-dimensional 

data set (X, Y and Z) (where the R-tree is indicated by Ra). Fig. 

2(b) presents the result of projecting the data points from Fig. 

2(a) and Ra onto the surface of XY. Fig. 2(c) presents an R-tree 

constructed using the XY surface, where the R-tree is indicated 

by Rb. It is clear that in Ra, the data points within a single node 

are more scattered, compared to those in Rb. When reading the 
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nodes that intersect with the skyline (i.e., the gray rectangles 

in Figs. 2(b) and 2(c)), the algorithm will read more nodes 

from Ra than from Rb. Therefore, using Ra to search for 

skyline results would be much more inefficient than using Rb. 

Current methods of processing subspace skyline queries use 

additional algorithms and architectures to accelerate the 

search process. Tao et al. [12] added the anchors algorithm 

to the conventional skyline algorithm to reduce the number 

of data points to be read when searching for the subspace 

skyline, thereby improving search efficiency. However, as 

this method still generates additional operational costs, the 

degree to which it actually improves the efficacy of 

subspace skyline queries is limited. Jin et al. [13] first 

obtained answers to all subspaces and then stored these 

answers using an additional indexing architecture. This 

approach allows users to immediately obtain the results they 

desire after inputting the search; however, it also requires 

significantly greater storage capacity for the additional 

index architecture. The current study proposes a novel 

subspace skyline algorithm capable of overcoming the 

weaknesses encountered using previous methods. 
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(a) A three dimensional dataset and its index result of the R-tree. 
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(b) The result of projecting the data points from (a) and Ra onto the surface 

of XY. 
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(c) An R-tree constructed using the data points on XY surface. 

Fig. 2. An example for explaining the difficulty that R-tree meets in the 

subspace skyline query. 

-2 -1 0 1 2 3 4 5

0.2

0.3

0.1

0.4

0.5
0.6

0.7

0.8

0.9

1.0

0

u = 2

σ = 0.5

 
Fig. 3. An example of the Gaussian function. 
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(a) An index result of the G-tree.            (b) An example of MBG. 

Fig. 4. An example of the G-tree. 

 

We designed a new index tree framework called the 

Gaussian tree (G-tree) to improve the efficiency of subspace 

skyline queries. All data points within a single G-tree node are 

extremely similar, whether in full space or various subspaces. 

Therefore, the G-tree can overcome the problems encountered 

when using the conventional R-tree in processing subspace 

skylines. When a G-tree constructed in the full space is used to 

search for a subspace skyline, the algorithm reads a limited 

number of data points, thereby improving search efficiency. 

Another advantage of using the G-tree to process subspace 

skyline queries is that we need only modify the conventional 

skyline algorithm rather than incorporating additional 

algorithms or architectures. This study employed a number of 

simulations to verify the efficiency of the G-tree to process 

subspace skyline queries. 

The remainder of this paper is organized as follows: Section 

II outlines the design of the G-tree, while Section III explains 

the methods of using the G-tree to find the subspace skyline 

points. Section IV provides experimental results and lastly 

Section V presents the conclusions of this study. 

 

II. G-TREE 

Two parts are discussed in this section, which are the 

extensions of our previous work [18]. These parts introduce 

the structure and the construction algorithm of the G-tree.  

A. G-Tree Structure 

The G-tree was built using the Gaussian function shown in 

Fig. 3; this function can be described as 
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Parameter u in (1) is the mean of the function used to 
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determine the location of the curve. In (1), σ is the standard 

deviation of the function used to determine the width of the 

curve. 

Fig. 4(a) presents the G-tree results built on the scenario 

in Fig. 1(a). Note that for ease of explanation, we employed 

only a two-dimensional example to introduce this tree. 

Structures with more dimensions could easily be 

extrapolated from this example. The G-tree has two types of 

nodes: internal nodes and leaf nodes. In Fig. 4(a), e1 is an 

example of an internal node storing other internal nodes, 

such as e3, e4, and e5. An example of a leaf node is e5, which 

stores data points such as A, C, and J. All nearby data points 

in Fig. 4(a) are included within the same oval. In this paper, 

this oval is called the Minimum Bounding Gaussian function 

(MBG). Every MBG in Fig. 4(b) comprises two Gaussian 

functions f(x) and f(y), in which the mean and standard 

deviations are (ux, σx) and (uy, σy). Thus, the correlation 

between any point Q(qx, qy) in the database and this MBG 

can be calculated as follows:  
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The dotted line in Fig. 4(b) represents the boundary of the 

MBG. The correlation between this node and any point on 

the line should be α, the value of which is defined by the 

user. 

Equation (2) also indicates that data point Q (qx, qy) must 

be very close to the MBG center (ux, uy) on both the x and y 

axes in order to obtain a Pq greater than 0 and be added to 

the MBG. If there is a significant difference between Q and 

the MBG center of any dimension, then Pq will approach 0 

and Q will not be inserted in this MBG. This design ensures 

that the dimensional values of data points within a single 

MBG will closely approach the value of the MBG center. 

Even if we reflect this MBG in another subspace, the data 

points will still be close in value to the MBG center. In this 

manner, the G-tree can overcome problems encountered 

when using R-tree to process subspace skyline queries.  

B. G-Tree Construction 

When building the G-tree, the algorithm inserts data 

points into the tree one at a time. Each inserted data point is 

processed, as shown in Fig. 5. 

 
Root of G-tree and Q

Laod MBG m1 ~ mn ( layer m )

Insert Q into mi

End

No

Build a new node for Q

Case 1

Is layer m leaf layer? 

Yes

Split mi

Case 2 Case 3

Evaluated Pqm1 ~ Pqmn and

 find the maximum value Pqmi among Pqm1 ~ Pqmn

m=m+1

 
Fig. 5. The flow chat of the G-tree construct

 

algorithm.

 

Assuming that the search point is Q (qx, qy), the algorithm 

starts at the root node and hierarchically searches for the 

node into which Q should be inserted. This process continues 

until Q is inserted into a leaf node. Assuming that the level to 

be searched is m with nodes m1 to mn, the algorithm will 

separately compute the possibility that Q falls into these nodes, 

indicated as Pqm1 to Pqmn. Assuming that Pqmi is the greatest 

of these possibilities, the following steps are taken based on 

Pqmi and the value α of the user-defined MBG boundary: 

Case 1: Pqmi < α. In this case, Q is not correlated with the 

nodes of layer m and therefore a Q-centered MBG me is 

constructed at level m. After me is constructed, the algorithm 

searches for the parent node of me at level m-1 and establishes 

the relationship between me and its parent node. If a parent 

node for me cannot be found at level m-1, the algorithm 

constructs an me-centered parent node at level m-1. 

Case 2: Pqmi ≥ α, and mi has not reached maximum 

capacity. In this case, Q is directly inserted into mi. 

Case 3: Pqmi ≥ α, and mi has reached maximum 

capacity. In this situation, Q is inserted into mi and then mi is 

split into mi1 and mi2. The center of mi is the central point of 

mi1 while the furthest point of mi is considered as the center of 

mi2. Next, the data points surrounding mi are re-allocated to the 

nodes to which they are most strongly correlated.  

 
Load child nodes of root node to the heap

Sort elements 

Insert e into S

End

Delete e from the heap Expand e and insert all 

child nodes of e into the heap

Retrieve the first element e from the heap

Case 1

Is the heap empty?

Yes

Examine the relationship between e and S

Case 2 Case 3

No

 Fig. 6. The flow chat of using G-tree to find the subspace skyline points. 

 

III. USING G-TREE TO FIND THE SUBSPACE SKYLINE POINTS 

Fig. 6 presents a flow chart illustrating the use of the G-tree 

to locate subspace skyline points. This is an extension of the 

algorithm in [6], employing three data structures: a G-tree, a 

heap, and a list. The heap stores temporary data as points or 

MBGs. For ease of explanation, we will refer to these as 

elements. The list stores subspace skyline points; sets of 

which are designated by S in the following. MBGs beneath the 

root node are first input into the heap and arranged in 

ascending order according to their summation of coordinates 

within the subspace. It should be noted that the summation of 

an MBG is equal to the smallest summation of coordinates 

related to a point in the subspace. The algorithm then retrieves 

the first element e from the heap and checks for domination 

using each point in S. The three possible results are listed in 

the following: 

Case 1: If e is dominated by any point in S, then e is deleted 

from the heap. 

Case 2: If e cannot be dominated by any point in S and is an 

MBG, then e is expanded and all internal nodes or data points 

within it are placed into the heap. 
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TABLE I: EXAMPLE OF USING G-TREE TO FIND SUBSPACE SKYLINE POINTS  

Step Heap Action Skyline (S) 

1 Φ Access root Φ 

2 <e1, 6.5> <e2, 8> Expand e1 Φ 

3 <e3, 6.8> <e2, 8> <e4, 9> <e5, 11> Expand e3 Φ 

4 <F, 6.8> <e2, 8> <e4, 9> <e5, 11> Move F to S {F} 

5 <e2, 8> <e4, 9> <e5, 11> Expand e2 {F} 

6 <e6, 8> <e4, 9> <e5, 11> <e7, 11.8> <e8, 12> <e9, 15> Expand e6 {F} 

7 <G, 8> <e4, 9> <e5, 11> <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Move G to S {F, G} 

8 <e4, 9> <e5, 11> <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Expand e4 {F, G} 

9 <B, 9> <L, 9.2> <e5, 11> <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Move B to S {F, G, B} 

10 <L, 9.2> <e5, 11> <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Delete L from heap {F, G, B} 

11 <e5, 11> <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Delete e5 from heap {F, G, B} 

12 <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Delete R from heap {F, G, B} 

13 <e7, 11.8> <e8, 12> <e9, 15> Delete e7 from heap {F, G, B} 

14 <e8, 12> <e9, 15> Delete e8 from heap {F, G, B} 

15 <e9, 15> Delete e9 from heap {F, G, B} 

16 Φ End {F, G, B} 

 

Case 3: If e cannot be dominated by any point in S and is 

a data point, then e is input into S. 

Once the heap is empty, the algorithm is terminated and S 

is retained as the subspace skyline answer. 

Table I is an extension of Fig. 4(a) to further illustrate the 

processes involved in this algorithm. In Step 1, the root node 

of the G-tree is extracted and e1 and e2 are added to the heap 

in accordance with their summations. In Step 2 the first 

element in the heap (i.e., e1) is retrieved. Because S is Φ, e1 

cannot be dominated by the existing skyline (Case 2). Thus, 

e1 is expanded into e3, e4, and e5. These MBGs are inserted 

into the heap according to their summations. Through steps 

3 – 16, the above-described processes are repeated. As a 

further interpretation of Cases 3 and 1, Steps 4 and 10 are 

detailed in the following. 

In step 4, the algorithm extracts the first element F from 

the heap for processing. However, because S is Φ, F cannot 

be dominated by the existing subspace skyline point, which 

matches the scenario in Case 3. Therefore, we insert F into S 

and eliminate S from the heap. 

In Step 10, the algorithm extracts the first element F from 

the heap for processing. However, according to Fig. 4(a) we 

know that L is dominated by F, a scenario which matches 

Case 1. Therefore, L cannot be the subspace skyline point 

and is directly eliminated from the heap. 

 

IV. PERFORMANCE 

This section uses an experiment to verify the efficiency of 

the G-tree, using two types of data distribution [1], [6], [19], 

[20] frequently employed for skyline purposes: independent 

datasets and the anti-correlated datasets. Generally, 

anti-correlated datasets are the worst case for the skyline 

problem, producing the highest number of skyline results. 

The independent dataset is considered a general case. The 

simulation first built a six-dimensional independent dataset 

and anti-correlated dataset. Each dataset included 1 million 

items of data. We then constructed an R-tree and G-tree for 

each of the datasets and used these two trees to obtain 

subspace skyline points with 2-5 dimensions. Each 

performance curve shown in the figures represents an average 

of the experimental results of 30 datasets [21]. All of the 

experiments were performed on an Intel i7-3770 CPU at 

3.40GHz with 4GB main memory, running on Microsoft 

Windows XP. All the programs were written in MATLAB® 

 
(a) Independent dataset. 

 

(b) Anti-correlated dataset. 
Fig. 7. Comparing the time cost of the R-tree and G-tree by varying the 

dimensionality of subspace. 

 

Fig. 7 illustrates the time required to obtain subspace 

skyline points with 2-5 dimensions using R-tree and G-tree. 

Fig. 7(a) shows the results of the independent dataset, while 

Fig. 7(b) displays the results of the anti-correlated dataset. 

From these two figures we can see that regardless of whether 

the R-tree or the G-tree was used, the time required to 

complete the algorithm increased with an increase in 

dimensions. This is because the number of skyline points 

grows with an increase in dimensions. The greater the number 

of skyline points, the more time required for the algorithm to 

identify all points. The figures also show that compared to the 
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G-tree, the R-tree time curve rises more quickly as 

dimensions increase. This is because when the algorithm 

employs a 6-dimenisonal R-tree to locate subspace skyline 

points with 2-5 dimensions, the data points of a single R-tree 

node may become dissimilar within the subspace. Although 

the algorithm reads only the nodes that intersect with the 

skyline, it is still necessary to read many far-off data points 

(i.e. data points with no possibility of being skyline data 

points), which significantly increases the I/O cost of the 

algorithm. The G-tree does not present this difficulty. When 

using a G-tree constructed on full space, we found that the 

data points of a single node in any type of subspace are 

always similar. Therefore, the nodes that intersect the 

skyline and are read by the algorithm are all close to the 

skyline (i.e. possible skyline data points), thereby 

controlling the I/O cost of the algorithm. These simulation 

results verify the efficiency of using the G-tree to process 

subspace skyline queries. 

 

V. CONCLUSION 

This paper proposes a novel index structure called G-tree 

to enhance the performance of subspace skyline queries. We 

began by outlining the difficulties involved in applying the 

R-tree in subspace skyline queries. We then illustrated the 

structure of the algorithm used to construct the G-tree. 

Finally, simulation results demonstrate the efficiency of the 

proposed G-tree in processing subspace skyline queries. In 

future work, we will apply the G-tree to other problems to 

verify whether the G-tree outperforms the R-tree in all types 

of skyline queries. 
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