



Abstract—The skyline search algorithm has recently

emerged as an important technique in database research.

Given a set of data points in a multidimensional database, such

queries return points that are not “dominated” (detailed in the

paper) by any other point. In practice, databases that require a

skyline query usually provide numerous candidate dimensions,

of which users are interested in only a few. As a result, queries

are issued regarding various subsets of the dimensions and

such queries are called subspace skyline queries.

Using the conventional skyline algorithm to process these

queries directly can be extremely ineffective. Additional

algorithms and architectures have been added to improve

search efficiency; however, such modifications can increase

computational costs or necessitate an increase in data storage

capacity. This paper proposes a novel index model based on a

Gaussian function to enhance the performance of subspace

skyline queries. Simulation results demonstrate the efficacy of

the proposed tree in locating skyline points within a subspace.

Index Terms—Database, skyline, tree structure.

I. INTRODUCTION

The skyline search algorithm [1]-[5] has moved to the

forefront of database research due to its wide applicability in

multi-criteria decision-making environments. Take for

example the cell phone dataset in Fig. 1(a), which includes

two attributes: the price (x axis) and weight (y axis) of cell

phones. If a consumer were looking for a light, inexpensive

cell phone, then cell phone F would be better than cell phone

L because F is cheaper and lighter than L (i.e., F dominates

L). Phone B is lighter but more expensive than phone F;

therefore, these cell phones cannot be compared (i.e.,

incomparable). Skyline queries operate by locating all

non-dominated data points. In this example, the skyline

points include B, F, and G because these cell phones are not

dominated by any other cell phones. The line connecting all

skyline points is called the skyline.

A major bottleneck in processing skyline queries is the fact

that all of the data points must be loaded into the algorithm at

least once, which means that the I/O costs can be

astronomical [4]-[6]. The most common method [6], [7] of

processing skyline queries is to first employ the R-tree

[8]-[11] to index data points, as shown in Fig. 1(b). In this

figure, similar data points are stored in the same node (i.e.,

the rectangle in Fig. 1(b)). Through the R-tree, the algorithm

Manuscript received June

17,

2013; revised August

12, 2013.

Y. C. Chen and C. Lee

are with the Department of Computer Science and

Information

Engineering, National Cheng Kung University, Tainan, 701,

Taiwan, R.O.C.

(e-mail: mitsukoshi901@dblab.csie.ncku.edu.tw,

leec@mail.ncku.edu.tw).

knows that only the data points in the nodes intersecting the

skyline (i.e. within the grey rectangle) are potential skyline

answers. None of the other data points could be skyline

solutions. In other words, obtaining skyline results requires

only that the algorithm load data points from within the grey

rectangle, which is far fewer than the total number of data

points in the set. This significantly reduces the I/O costs of the

overall algorithm.

1 2 3 4 5 6 7 8 9 10

1

2

0

3

4

5

6

7

8

9

10

A

B

C

0

DE

F

G

J

H

I

K

L

M

N

y

x

R

S

price

W
ei

g
h
t

1 2 3 4 5 6 7 8 9 10

1

2

0

3

4

5

6

7

8

9

10

A

B

C

0

DE

F

G

J

H

I

K

L

e1

e2

e3

e5

e6

e7

e4

M

N

y

x

R

S

price

W
ei

g
h
t

(a) Original dataset. (b) An index result of the R-tree.

Fig. 1. The cell phone dataset.

Subspace skyline queries [12]-[17] are an important topic in

skyline queries. To define a subspace skyline query, assume

that the entire (the full space dataset) has d dimensions, and

the algorithm obtains skyline results using only n (n<d)

dimensions in the subspace rather than using all d dimensions.

For example, a hotel database usually has more than five

dimensions, such as room prices, room sizes, restaurant prices,

hotel ranking, restaurant ranking, distance to the beach,

distance to scenic spots, and distance to the airport. However,

a user may only be interested in room price and distance to the

airport, while another user would want to learn about room

price, hotel ranking, and distance to scenic spots. Traditional

skyline algorithms consider all dimensions, yet these two

cases consider subsets of the dimensions, possibly resulting in

entirely different skyline points. As a result, new algorithms

must be derived for subspace skyline queries.

The most intuitive method used to process subspace skyline

queries is to build an R-tree of all data points in the entire

space and then use this tree to search for the subspace skyline

[12]. However, this method performs poorly because the data

points in a single R-tree node are similar in the full space but

not necessarily similar within the subspace (see Fig. 2). Fig.

2(a) presents an R-tree constructed using a three-dimensional

data set (X, Y and Z) (where the R-tree is indicated by Ra). Fig.

2(b) presents the result of projecting the data points from Fig.

2(a) and Ra onto the surface of XY. Fig. 2(c) presents an R-tree

constructed using the XY surface, where the R-tree is indicated

by Rb. It is clear that in Ra, the data points within a single node

are more scattered, compared to those in Rb. When reading the

G-Tree: A Novel Index Structure for Subspace Skyline

Query

Yi-Chung Chen and Chiang Lee

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

483DOI: 10.7763/IJEEEE.2013.V3.283

nodes that intersect with the skyline (i.e., the gray rectangles

in Figs. 2(b) and 2(c)), the algorithm will read more nodes

from Ra than from Rb. Therefore, using Ra to search for

skyline results would be much more inefficient than using Rb.

Current methods of processing subspace skyline queries use

additional algorithms and architectures to accelerate the

search process. Tao et al. [12] added the anchors algorithm

to the conventional skyline algorithm to reduce the number

of data points to be read when searching for the subspace

skyline, thereby improving search efficiency. However, as

this method still generates additional operational costs, the

degree to which it actually improves the efficacy of

subspace skyline queries is limited. Jin et al. [13] first

obtained answers to all subspaces and then stored these

answers using an additional indexing architecture. This

approach allows users to immediately obtain the results they

desire after inputting the search; however, it also requires

significantly greater storage capacity for the additional

index architecture. The current study proposes a novel

subspace skyline algorithm capable of overcoming the

weaknesses encountered using previous methods.

B

C

D

F

J
H

I

K

N

L

y

A

x

z

E
G

M

R

(a) A three dimensional dataset and its index result of the R-tree.

B

C
D

E

F

G

J

H

I

K

N

L

M

y

x

R

A

(b) The result of projecting the data points from (a) and Ra onto the surface

of XY.

B

C

D

E

F

G

J

H

I

K

N

L
y

x

R

A

M

(c) An R-tree constructed using the data points on XY surface.

Fig. 2. An example for explaining the difficulty that R-tree meets in the

subspace skyline query.

-2 -1 0 1 2 3 4 5

0.2

0.3

0.1

0.4

0.5
0.6

0.7

0.8

0.9

1.0

0

u = 2

σ = 0.5

Fig. 3. An example of the Gaussian function.

1 2 3 4 5 6 7 8 9 10

1

2

0

3

4

5

6

7

8

9

10

A

B

C

0

DE

F

G

J

H

I

K

L

M

N

y

x

R

S

price

W
ei

g
h

t

e6

e3 e4

e5

e7

e8

e9

e1

e2

σx

2 3 4 5 6 7 8 9 10

1

2

0

3

4

5

6

7

8

9

10

x

y

σy

(ux, uy)

f(x)

f(y)

ux

uy

Q(qx, qy)

(a) An index result of the G-tree. (b) An example of MBG.

Fig. 4. An example of the G-tree.

We designed a new index tree framework called the

Gaussian tree (G-tree) to improve the efficiency of subspace

skyline queries. All data points within a single G-tree node are

extremely similar, whether in full space or various subspaces.

Therefore, the G-tree can overcome the problems encountered

when using the conventional R-tree in processing subspace

skylines. When a G-tree constructed in the full space is used to

search for a subspace skyline, the algorithm reads a limited

number of data points, thereby improving search efficiency.

Another advantage of using the G-tree to process subspace

skyline queries is that we need only modify the conventional

skyline algorithm rather than incorporating additional

algorithms or architectures. This study employed a number of

simulations to verify the efficiency of the G-tree to process

subspace skyline queries.

The remainder of this paper is organized as follows: Section

II outlines the design of the G-tree, while Section III explains

the methods of using the G-tree to find the subspace skyline

points. Section IV provides experimental results and lastly

Section V presents the conclusions of this study.

II. G-TREE

Two parts are discussed in this section, which are the

extensions of our previous work [18]. These parts introduce

the structure and the construction algorithm of the G-tree.

A. G-Tree Structure

The G-tree was built using the Gaussian function shown in

Fig. 3; this function can be described as

   
2 2/ 21

2

x u
f x e



 

 
 (1)

Parameter u in (1) is the mean of the function used to

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

484

determine the location of the curve. In (1), σ is the standard

deviation of the function used to determine the width of the

curve.

Fig. 4(a) presents the G-tree results built on the scenario

in Fig. 1(a). Note that for ease of explanation, we employed

only a two-dimensional example to introduce this tree.

Structures with more dimensions could easily be

extrapolated from this example. The G-tree has two types of

nodes: internal nodes and leaf nodes. In Fig. 4(a), e1 is an

example of an internal node storing other internal nodes,

such as e3, e4, and e5. An example of a leaf node is e5, which

stores data points such as A, C, and J. All nearby data points

in Fig. 4(a) are included within the same oval. In this paper,

this oval is called the Minimum Bounding Gaussian function

(MBG). Every MBG in Fig. 4(b) comprises two Gaussian

functions f(x) and f(y), in which the mean and standard

deviations are (ux, σx) and (uy, σy). Thus, the correlation

between any point Q(qx, qy) in the database and this MBG

can be calculated as follows:

    2 22 2 2 221

2

y x x x x x x yq u q u

x y

q e
   

 

    
  

 
P (2)

The dotted line in Fig. 4(b) represents the boundary of the

MBG. The correlation between this node and any point on

the line should be α, the value of which is defined by the

user.

Equation (2) also indicates that data point Q (qx, qy) must

be very close to the MBG center (ux, uy) on both the x and y

axes in order to obtain a Pq greater than 0 and be added to

the MBG. If there is a significant difference between Q and

the MBG center of any dimension, then Pq will approach 0

and Q will not be inserted in this MBG. This design ensures

that the dimensional values of data points within a single

MBG will closely approach the value of the MBG center.

Even if we reflect this MBG in another subspace, the data

points will still be close in value to the MBG center. In this

manner, the G-tree can overcome problems encountered

when using R-tree to process subspace skyline queries.

B. G-Tree Construction

When building the G-tree, the algorithm inserts data

points into the tree one at a time. Each inserted data point is

processed, as shown in Fig. 5.

Root of G-tree and Q

Laod MBG m1 ~ mn (layer m)

Insert Q into mi

End

No

Build a new node for Q

Case 1

Is layer m leaf layer?

Yes

Split mi

Case 2 Case 3

Evaluated Pqm1 ~ Pqmn and

 find the maximum value Pqmi among Pqm1 ~ Pqmn

m=m+1

Fig. 5. The flow chat of the G-tree construct

algorithm.

Assuming that the search point is Q (qx, qy), the algorithm

starts at the root node and hierarchically searches for the

node into which Q should be inserted. This process continues

until Q is inserted into a leaf node. Assuming that the level to

be searched is m with nodes m1 to mn, the algorithm will

separately compute the possibility that Q falls into these nodes,

indicated as Pqm1 to Pqmn. Assuming that Pqmi is the greatest

of these possibilities, the following steps are taken based on

Pqmi and the value α of the user-defined MBG boundary:

Case 1: Pqmi < α. In this case, Q is not correlated with the

nodes of layer m and therefore a Q-centered MBG me is

constructed at level m. After me is constructed, the algorithm

searches for the parent node of me at level m-1 and establishes

the relationship between me and its parent node. If a parent

node for me cannot be found at level m-1, the algorithm

constructs an me-centered parent node at level m-1.

Case 2: Pqmi ≥ α, and mi has not reached maximum

capacity. In this case, Q is directly inserted into mi.

Case 3: Pqmi ≥ α, and mi has reached maximum

capacity. In this situation, Q is inserted into mi and then mi is

split into mi1 and mi2. The center of mi is the central point of

mi1 while the furthest point of mi is considered as the center of

mi2. Next, the data points surrounding mi are re-allocated to the

nodes to which they are most strongly correlated.

Load child nodes of root node to the heap

Sort elements

Insert e into S

End

Delete e from the heap Expand e and insert all

child nodes of e into the heap

Retrieve the first element e from the heap

Case 1

Is the heap empty?

Yes

Examine the relationship between e and S

Case 2 Case 3

No

 Fig. 6. The flow chat of using G-tree to find the subspace skyline points.

III. USING G-TREE TO FIND THE SUBSPACE SKYLINE POINTS

Fig. 6 presents a flow chart illustrating the use of the G-tree

to locate subspace skyline points. This is an extension of the

algorithm in [6], employing three data structures: a G-tree, a

heap, and a list. The heap stores temporary data as points or

MBGs. For ease of explanation, we will refer to these as

elements. The list stores subspace skyline points; sets of

which are designated by S in the following. MBGs beneath the

root node are first input into the heap and arranged in

ascending order according to their summation of coordinates

within the subspace. It should be noted that the summation of

an MBG is equal to the smallest summation of coordinates

related to a point in the subspace. The algorithm then retrieves

the first element e from the heap and checks for domination

using each point in S. The three possible results are listed in

the following:

Case 1: If e is dominated by any point in S, then e is deleted

from the heap.

Case 2: If e cannot be dominated by any point in S and is an

MBG, then e is expanded and all internal nodes or data points

within it are placed into the heap.

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

485

TABLE I: EXAMPLE OF USING G-TREE TO FIND SUBSPACE SKYLINE POINTS

Step Heap Action Skyline (S)

1 Φ Access root Φ

2 <e1, 6.5> <e2, 8> Expand e1 Φ

3 <e3, 6.8> <e2, 8> <e4, 9> <e5, 11> Expand e3 Φ

4 <F, 6.8> <e2, 8> <e4, 9> <e5, 11> Move F to S {F}

5 <e2, 8> <e4, 9> <e5, 11> Expand e2 {F}

6 <e6, 8> <e4, 9> <e5, 11> <e7, 11.8> <e8, 12> <e9, 15> Expand e6 {F}

7 <G, 8> <e4, 9> <e5, 11> <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Move G to S {F, G}

8 <e4, 9> <e5, 11> <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Expand e4 {F, G}

9 <B, 9> <L, 9.2> <e5, 11> <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Move B to S {F, G, B}

10 <L, 9.2> <e5, 11> <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Delete L from heap {F, G, B}

11 <e5, 11> <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Delete e5 from heap {F, G, B}

12 <R, 11.2> <e7, 11.8> <e8, 12> <e9, 15> Delete R from heap {F, G, B}

13 <e7, 11.8> <e8, 12> <e9, 15> Delete e7 from heap {F, G, B}

14 <e8, 12> <e9, 15> Delete e8 from heap {F, G, B}

15 <e9, 15> Delete e9 from heap {F, G, B}

16 Φ End {F, G, B}

Case 3: If e cannot be dominated by any point in S and is

a data point, then e is input into S.

Once the heap is empty, the algorithm is terminated and S

is retained as the subspace skyline answer.

Table I is an extension of Fig. 4(a) to further illustrate the

processes involved in this algorithm. In Step 1, the root node

of the G-tree is extracted and e1 and e2 are added to the heap

in accordance with their summations. In Step 2 the first

element in the heap (i.e., e1) is retrieved. Because S is Φ, e1

cannot be dominated by the existing skyline (Case 2). Thus,

e1 is expanded into e3, e4, and e5. These MBGs are inserted

into the heap according to their summations. Through steps

3 – 16, the above-described processes are repeated. As a

further interpretation of Cases 3 and 1, Steps 4 and 10 are

detailed in the following.

In step 4, the algorithm extracts the first element F from

the heap for processing. However, because S is Φ, F cannot

be dominated by the existing subspace skyline point, which

matches the scenario in Case 3. Therefore, we insert F into S

and eliminate S from the heap.

In Step 10, the algorithm extracts the first element F from

the heap for processing. However, according to Fig. 4(a) we

know that L is dominated by F, a scenario which matches

Case 1. Therefore, L cannot be the subspace skyline point

and is directly eliminated from the heap.

IV. PERFORMANCE

This section uses an experiment to verify the efficiency of

the G-tree, using two types of data distribution [1], [6], [19],

[20] frequently employed for skyline purposes: independent

datasets and the anti-correlated datasets. Generally,

anti-correlated datasets are the worst case for the skyline

problem, producing the highest number of skyline results.

The independent dataset is considered a general case. The

simulation first built a six-dimensional independent dataset

and anti-correlated dataset. Each dataset included 1 million

items of data. We then constructed an R-tree and G-tree for

each of the datasets and used these two trees to obtain

subspace skyline points with 2-5 dimensions. Each

performance curve shown in the figures represents an average

of the experimental results of 30 datasets [21]. All of the

experiments were performed on an Intel i7-3770 CPU at

3.40GHz with 4GB main memory, running on Microsoft

Windows XP. All the programs were written in MATLAB®

(a) Independent dataset.

(b) Anti-correlated dataset.
Fig. 7. Comparing the time cost of the R-tree and G-tree by varying the

dimensionality of subspace.

Fig. 7 illustrates the time required to obtain subspace

skyline points with 2-5 dimensions using R-tree and G-tree.

Fig. 7(a) shows the results of the independent dataset, while

Fig. 7(b) displays the results of the anti-correlated dataset.

From these two figures we can see that regardless of whether

the R-tree or the G-tree was used, the time required to

complete the algorithm increased with an increase in

dimensions. This is because the number of skyline points

grows with an increase in dimensions. The greater the number

of skyline points, the more time required for the algorithm to

identify all points. The figures also show that compared to the

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

486

G-tree, the R-tree time curve rises more quickly as

dimensions increase. This is because when the algorithm

employs a 6-dimenisonal R-tree to locate subspace skyline

points with 2-5 dimensions, the data points of a single R-tree

node may become dissimilar within the subspace. Although

the algorithm reads only the nodes that intersect with the

skyline, it is still necessary to read many far-off data points

(i.e. data points with no possibility of being skyline data

points), which significantly increases the I/O cost of the

algorithm. The G-tree does not present this difficulty. When

using a G-tree constructed on full space, we found that the

data points of a single node in any type of subspace are

always similar. Therefore, the nodes that intersect the

skyline and are read by the algorithm are all close to the

skyline (i.e. possible skyline data points), thereby

controlling the I/O cost of the algorithm. These simulation

results verify the efficiency of using the G-tree to process

subspace skyline queries.

V. CONCLUSION

This paper proposes a novel index structure called G-tree

to enhance the performance of subspace skyline queries. We

began by outlining the difficulties involved in applying the

R-tree in subspace skyline queries. We then illustrated the

structure of the algorithm used to construct the G-tree.

Finally, simulation results demonstrate the efficiency of the

proposed G-tree in processing subspace skyline queries. In

future work, we will apply the G-tree to other problems to

verify whether the G-tree outperforms the R-tree in all types

of skyline queries.

ACKNOWLEDGMENT

This work was supported by NSC under the Grant NSC

100-2221-E-006-250-MY3.

REFERENCES

[1] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,”

in Proc. ICDE, 2001, pp. 235-254.

[2] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with

presorting,” in Proc. ICDE, 2003, pp. 717-719.

[3] P. K. Eng, B. C. Ooi, and K. L. Tan, “Indexing for progressive skyline

computation,” Data & Knowledge Engineering, vol. 46, pp. 169-201,

2003.

[4] I. Bartolini, P. Ciaccia, and M. Patella, “SaLSa: Computing the

skyline without scanning the whole sky,” in Proc. CIKM, 2006, pp.

405-414.

[5] I. Bartolini, P. Ciaccia, and M. Patella, “Efficient sort-based skyline

evaluation,” ACM Transactions on Database Systems, vol. 33, no. 4,

pp.31-48, 2008.

[6] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive

algorithm for skyline queries,” in Proc. SIGMOD, 2003.

[7] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: an

online algorithm for skyline queries,” in Proc. VLDB, 2002.

[8] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”

SIGMOD Record, vol. 14, no. 2, pp. 47-57, 1984.

[9] N. Beckmann, H. P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:

An efficient and robust access method for points and rectangles,” in

Proc. SIGMOD, 1990.

[10] S. Li, D. Zhao, and K. Bai, “A new approach of R-tree construction,” in

Proc. ICCIS, 2012, pp. 684-687.

[11] G. Li and J. Tang, “A new R-tree spatial index based on space grid

coordinate division,” in Proc. ICCE, 2011.

[12] Y. Tao, X. Xiao, and J. Pei, “SUBSKY: Efficient computation of

skylines in subspaces,” in Proc. ICDE, 2006, pp. 65-74.

[13] W. Jin, A. K. H. Tung, M. Ester, and J. Han, “On Efficient Processing of

Subspace Skyline Queries on High Dimensional Data,” in Proc. SSDBM,

2007.

[14] J. Pei, Y. Yuan, X. Lin, W. Jin, M. Ester, Q. Liu, W. Wang, Y. Tao, J. X.

Yu, and Q. Zhang, “Towards multidimensional subspace skyline

analysis,” ACM Transactions on Database Systems, vol. 31, no. 4, pp.

1335-1381, 2006.

[15] M. Bai, J. Xin, and G. Wang, “Subspace global skyline query

processing,” in Proc. EDBT, 2013.

[16] J. Kim, J. Lee, and S. W. Hwang, “Skyline view: Efficient distributed

subspace skyline computation,” in Proc. DaWaK, 2009.

[17] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis,

“SKYPEER: Efficient subspace skyline computation over distributed

data,” in Proc. ICDE, 2007, pp. 416-425.

[18] Y. C. Chen, H. C. Liao, and C. Lee, “A novel g-tree for accelerating the

time-consuming skyline query,” in Proc. IKE, 2013.

[19] K. L. Tan, P. K. Eng, and B. C. Ooi, “Efficient progressive skyline

computation,” in Proc. VLDB, 2001, pp. 301-310.

[20] M. L. Yiu, E. Lo, and D. Yung, “Measuring the sky: On computing data

cubes via skylining the measures,” IEEE Trans. Knowledge and Data

Engineering, vol. 24, no. 3, pp. 492-503, 2012.

[21] Y. L. Hsu and J. S. Wang, “A Wiener-Type recurrent neural network and

its control strategy for nonlinear dynamic applications,” Journal of

Process Control, vol. 19, no. 6, pp. 942-953, 2009.

Yi-Chung Chen is a PhD student in the Department of

Computer Science and Information Engineering at

National Cheng-Kung University, Taiwan. His research

interests include databases and artificial intelligences.

Chiang Lee received the BS degree from National

Cheng-Kung University, Taiwan, in 1980 and the ME

and PhD degrees in electrical engineering from the

University of Florida, Gainesville, in 1986 and 1989,

respectively. He joined IBM Mid-Hudson Laboratories,

Kingston, New York, in 1989 and participated in a

project working on the design and performance analysis

of a parallel and distributed database system. He joined

the faculty of National Cheng-Kung University in 1990 and is currently a

professor of the Department of Computer Science and Information

Engineering. He has published many papers in major journals and

conferences, and has been invited as an author of a chapter for several

technical books.

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

487

