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Abstract—Low Density Parity Check (LDPC) codes over 

nonbinary Galois Fields GF(q) are a generalization of the 

industrial standard binary LDPC codes for forward error 

correction in communication and information systems. The 

nonbinary codes can achieve significantly better performance 

for short and moderate block lengths. A lot of works concerning 

“good” LDPC codes parity check matrix construction has been 

published so far. However, it is well known that efficient 

partially parallel hardware decoder architectures are allowed 

only for codes with blockwise partitioned structure of the parity 

check matrix, called structured codes. In this paper we present 

a versatile algorithm for construction of codes that are both 

nonbinary and structured. The proposed algorithm aims at 

optimizing the code graph (Tanner graph) by reducing the 

existence of small cycles with low external connectivity, while at 

the same time selecting appropriate nonzero coefficients from 

the Galois Field under interest. The algorithm can be used for 

code construction of any field order, block length and code rate. 

 
Index Terms—LDPC codes, nonbinary codes, structured 

codes, tanner graph. 

 

I. INTRODUCTION 

Low-density parity-check (LDPC) codes, after their 

“rediscovery” in late 90’s [1], have attracted great research 

attention due to their excellent error-correcting performance 

and highly parallel iterative decoding scheme. They have 

become the industry standard for error correction coding, 

adopted for instance in the ETSI Digital Video Broadcasting 

(DVB) and the IEEE WiMAX. 

In the case of small to moderate codeword length or in the 

case of higher order modulation, the nonbinary LDPC codes 

over Galois Fields GF (q) [2] can outperform their binary 

counterparts with comparable bit-length and rate. At the 

same time, a so-called structured LDPC codes offer the 

advantage of reduced implementation complexity and 

resolved memory access contention in the semi-parallel 

hardware decoder implementation [3]-[5]. Therefore it is of 

great interest to develop algorithmic design methods for 

codes construction that are both nonbinary and structured. 

The class of structured codes is also known as 

Architecture-Aware LDPC (AA-LDPC) or Implementation 

Oriented codes [3], [6]. 

A lot of works concerning parity check matrix 
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construction for LDPC codes has been published so far, e.g. 

[7]-[9]. However, the literature concerning construction 

methods for structured LDPC codes is still quite poor, 

especially for the nonbinary codes. In this paper we present a 

flexible algorithm based on computer search for “good” 

structured nonbinary LDPC codes. We use the known fact of 

the relationship between performance of the code and 

existence of some harmful subgraphs [10], [11] in the code 

graph (Tanner graph [12]). Moreover we take into account 

the performance dependence on the coefficients selection for 

the nonzero parity check matrix entries [2], [13]. Our code 

construction algorithm combines the reduction of harmful 

subgraphs in the structured code graph with the specific 

coefficients selection for the nonbinary entries. The 

algorithm can be used for code construction of any block 

length and code rate. 

The paper is organized as follows. The next section recalls 

the definition of nonbinary LDPC codes and their structured 

subclass. Definitions of the concepts connected with code 

and VI we present results of the algorithm experimental 

verification and the conclusions. 

 

II. STRUCTURED LDPC CODES OVER GALOIS FIELDS 

Low-density parity-check codes are a class of a linear 

block error correcting codes. Encoding process for a linear 

code (N, K) adds M=N−K redundant elements to the 

information vector u={u1, u2 uK

x={x1, x 2 xN

defined over the Galois field GF(q) with restriction to fields 

of the size being power of two (q=2p). In the case of the well 

known binary codes the field size is 2 (thus p=1), whereas for 

the nonbinary codes p>1. 

The (N,K) LDPC code is defined by a low density parity 

check matrix HM×N with GF(2p) entries, where M=N−K is the 

number of the parity check equations. Remark that since the 

information vectors are over GF(2p), the source block 

comprises K∙p bits and the code block comprises N∙p bits. We 

denote the entries of the parity check matrix as hm,n.  

In the decoder, a row vector c (in GF(2p)) of length N is 

recognized as a correct codeword if and only if it satisfies the 

parity check equation Hc
T = 0M×N, where the operations (“+” 

and “∙”) are performed in the Galois field arithmetic. This 

equation can be partitioned into M checks associated with M 

rows of H. When the parity check equation is not satisfied, 

then the error correction decoding is applied by means of the 

iterative message passing algorithm [1]. 

As is well known (see e.g. [3], [6], [14]), efficient partially 
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graph properties are presented in Section Section  III. Then in 

}. The information and code vectors are , …, 

} to form the code vector , …, 

IV we present the developed algorithm. Finally in Sections V 



parallel decoder implementation is possible for parity-check 

matrices with special constraints on their form. The main 

building blocks of partially-parallel decoder are message 

memories and a number of computation units. In order to 

suitably organize message memories accesses and eliminate 

contentions, the parity check matrix should be in a structured 

form, partitioned into square submatrices. In the literature 

this problem is treated mainly for binary LDPC codes, 

however it is similar for codes over higher order Galois 

fields. 

The structured GF (q) LDPC code is defined by the parity 

check matrix H being a composite of a square submatrices: 
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where each submatrix Pd,l of size P×P is either an all-zero 

matrix or a matrix with exactly one nonzero element in every 

row and every column. In our construction of the GF(q) 

LDPC structured codes we use submatrices, which are 

cyclical shifts of columns of an identity matrix multiplied by 

a constant coefficient a ∈ GF(q), e.g.: 

 

 
,

0 0 0

0 0 0

0 0 0

0 0 0

d l

a

a

a

a

 
 
 
 
 
 

P
 (2) 

 

Therefore the “good” code construction algorithm 

encompass specifying positions of nonzero submatrices as 

well as cyclical shift values and coefficients a. The proposed 

algorithm use code graph optimization to determine positions 

and cyclical shifts as well as “good” row coefficient sets [13] 

for coefficients selection. 

 

III. CODE GRAPH PROPERTIES 

LDPC codes can also be defined by an alternative to parity 

check matrix representation: a bipartite Tanner graph with so 

called symbol nodes representing data symbols and check 

nodes representing parity checks associated with rows of H. 

In his section we review the essential code graph properties 

affecting the code error correcting capabilities.  

The parity check matrix and its Tanner graph have direct 

correspondence, e.g. as shown in Fig. 1. We define Tanner 

graph  ,c b  , where  1 2, , ,c Mc c c is the set of 

the check nodes,  1 2, , ,b Nb b b  is the set of symbol 

nodes and 
b c  is the set of edges. An edge 

 ,i n me b c  belongs to  if and only if 
, 0m nh  . Because of 

the mentioned direct correspondence between H and , we 

will use them interchangeably for a code definition. 

Using a concentration theorem, the authors of [15] have 

shown that for an ensemble of sufficiently long LDPC codes 

with given degree distribution of the graph nodes, the 

performance is concentrated at the average performance of 

the ensemble. However, at short to medium block lengths, 

performance of the randomly selected codes significantly 

deviate from the theoretical ensemble average performance. 

It is caused by short cycles in the Tanner graph as well as 

some more complex subgraphs that are shortly discussed 

below. 
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Fig. 1. Parity check matrix and Tanner graph. 

 

A cycle in the graph is usually defined as a sequence of 

adjacent edges which starts and ends at the same vertex, and 

satisfies the condition that no vertex appears more than once. 

In this paper we also use a term of closed walk, which is a 

sequence of adjacent edges without restriction of their single 

appearance [16]. Cycles and closed walks are denoted as e1 ∼ 

e2 ∼ · · · ∼ ek ∼, where e1, e2,…,ek are consecutive edges in the 

cycle. 

A Stopping Set 
a

 is a subset of a symbol nodes, for 

which the subgraph of  induced by 
a
and its neighboring 

check nodes contains no check nodes of degree one [11]. 

A Trapping Set 
,a b

 is a subset of a symbol nodes, for 

which the subgraph of  induced by 
,a b

 and its neighbors 

contains b odd-degree check nodes [11], for example see Fig. 

2. 

As was proved [10], [11], the performance of an iteratively 

decoded LDPC code is limited by the existence of small 

stopping sets and trapping sets in the graph of the code. Since 

there are very few check nodes capable of correcting errors 

within the trapping set, this incorrect information remains 

“trapped” until the termination of the decoding process. 

Finally, we recall the parameter that indicates 

“harmfulness” of the cycles in the Tanner graph. An extrinsic 

check node of a symbol node set is a check node that is singly 

connected to this set. The Extrinsic Message Degree (EMD) 

of a symbol node set (e.g. a set forming a cycle) is the number 

of extrinsic check nodes of this symbol node set [7]. A set of 

symbol nodes with large EMD will require concatenation of 

an additional nodes to become a stopping set. 
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Fig. 2. Subgraphs induced by Trapping Sets 

6,1
and 

,a b
. 

 

In a bipartite graph free of degree-1 bit nodes, every 

stopping set contains cycles [7]. Similarly trapping sets are 
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composed of interconnected cycles (Fig. 2). Hence, if short 

cycles are eliminated from the graph, also small stopping sets 

and trapping sets are eliminated. However, not only the 

length, but also the connectivity of cycles plays 

importantroles, because cycles having low EMD are more 

prone to induce small trapping sets [7]. Minimization of short 

cycles with low EMD is the basis of many published code 

construction methods, e.g. [7], [8], [17]. In this paper the idea 

of low-EMD short cycles elimination is adopted for 

structured GF(q) LDPC codes construction. 

 

IV. STRUCTURED CODES CONSTRUCTION ALGORITHM 

The parity check matrix H of size DP×LP that is suitable 

for efficient decoder architecture, as discussed earlier, is an 

D×L matrix of P×P submatrices. Let us define the D×L 

matrix W with entries wd,l =0 indicating the all-zero 

submatrices Pd,l in H and nonzero entries wd,l =a≠0 

indicating the nonzero submatrices positions in H and its 

coefficients a ∈ GF(2p). We call W the seed matrix and the 

respective graph we call the seed graph. Thus the two main 

steps in the structured LDPC code parity check matrix 

construction are: 

 the seed matrix W (seed graph) construction, 

 expansion of the seed matrix (seed graph), which means 

replacing its scalar entries with appropriate P×P 

submatrices. 

A. Seed Graph Construction 

The seed matrix (seed graph) can be constructed in any 

known method for constructing binary LDPC parity check 

matrices without structured form. Especially suitable is the 

PEG (Progressive Edge Growth) algorithm [8], [9]. Then the 

nonzero entries of obtained binary matrix are substituted with 

GF(q) entries (coefficients). The selection of coefficients 

should be made carefully, because it affects the code 

performance [13]. This issue is treated later in this section. 

Regardless of the method used for construction, the 

relatively small seed graph contains a lot of short cycles, 

which can be eliminated in the graph expansion. Thus, the 

crucial step for achieving desirable graph properties is the 

expansion of the seed graph. 

B. Seed Graph Expansion 

The seed graph expansion is defined by cyclical shift 

values selected for all nonzero submatrices (2). With every 

edge ei in the seed graph, a cyclical shift value sei should be 

associated, where sei is an integer, 0 ≤ sei <P. Then the 

submatrix of the structured parity check matrix, associated 

with ei, is a sei -shift of columns of the identity P×P matrix, 

multiplied by a coefficient taken from the seed matrix. 

The proper selection of cyclical shift values is crucial for 

achieving a code graph with good properties. Cycles in the 

graph after expansion are related to closed walks in the seed 

graph, however they can be “removed” (strictly speaking: 

their length can be increased) in the expansion process by 

proper selection of the cyclical shift values. An example is 

presented in Fig. 3. 

The crucial theorem characterizing the relationship 

between cycles in the seed graph and cycles in the expanded 

graph was presented in [18]. It can be summarized as follows. 

If the seed graph contains a closed walk e1 ∼ e2 ∼ · · · ∼ ek ∼ 

of length k, then the graph after expansion contains 

respective cycles of length k if the following condition (3) is 

satisfied: 
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Fig. 3. An expansion of a subgraph induced by a 4-cycle. 

 

1 2 3 4 1 0 mode e e e ek eks s s s s s P        (3) 

 

where se1, se2, …, sek are the selected cyclical shift values 

associated with edges e1, e2, …, ek.  

The importance of taking into consideration all closed 

walks (not only cycles) in the seed graph is illustrated in Fig. 

3, where the closed walk e1 ∼ e2 ∼ e3 ∼ e4 ∼ is not a source of 

a 4-cycle (condition (3) not satisfied), but the closed walk e1 

∼ e2 ∼ e3 ∼ e4 ∼ e1 ∼ e2 ∼ e3 ∼ e4 ∼ is a source of an 8-cycle. 

The condition (3) in this case is: se1 - se2 + se3 - se4 + se1 - se2 + se3 

- se4 = 2 - 0 + 0 - 0 + 2 - 0 + 0 - 0 ≡ 0 (mod 4). 

The condition for non-existence of a cycle in the covering 

graph on the contrary to (3) is: 

 

1 2 3 4 1 0 mode e e e ek eks s s s s s P          (4) 

 

C. Nonzero Coefficients Selection 

The nonzero coefficients of W choice affect performance 

of the code, as was proved in [13]. For every row of the parity 

check matrix, an independent choice of a set of nonzero 

coefficients can be made. The coefficient set for every row 

can be chosen from a precomputed collection of sets, with 

unrestricted sequence inside the set. In our structured code 

construction algorithm, we incorporate the coefficient 

collections pre-computing method presented in [13]. 

Moreover we incorporate the cycles conditioning method 

[13]: for every cycle that has not been removed in the 

expansion process, the proposed code construction algorithm 

tries to modify the coefficient set choices in a way that 

enables fulfilling the so-called FRC (full rank condition), 

which can be given as: 
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where a1, a2, … , ak are the coefficients (elements of W) 

associated with edges of a cycle in the structured code graph 

e1 ∼ e2 ∼ · · · ∼ ek ∼, which has not been removed in the 

expansion process. The details about the theorem behind the 

FRC can be found in [13]. 

D. Code Construction Algorithm 

Based on considerations presented in the previous sections, 

a proper direction to generate a graph for a structured GF(q) 

LDPC code is to construct a “good” seed graph and then 

select cyclical shift values sei in a way to remove the existing 
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cycles (especially cycles with low EMD) in the expansion 

process. The complex algorithm for the parity check matrix 

construction that has been developed is summarized below as 

Algorithm 1. 

The essential part of the algorithm is the seed graph 

expansion and careful selection of coefficients in order to 

satisfy FRC (5) for cycles that cannot be removed. 

All closed walks in the seed graph of length lower than 

some predetermined Kmax are placed on the priority list LCW 

(List of Closed Walks). Walks of length 4 begin the list, 

because of their well known destructive influence on the 

iterative decoding algorithm, then walks with EMD=0, 

because their bit nodes constitute the most harmful trapping 

sets ,0a . Finally all remaining walks in order of of their 

length k and EMD are placed on the list. 

Consecutively for every closed walk on the created LCW 

list, the cyclical shift values S are adjusted by a computer 

search technique that has been developed previously for 

binary codes (see [19]) by the authors of this paper. The 

technique is simply based on multiple trials of incrementing 

the values sei associated with edges ei belonging to the closed 

walk. 

 

 
 

After some number of stages, as the values of S are 

increasing, conditions for some cycles cannot be satisfied 

without violating conditions for previously considered ones. 

In such a case, the result of the search is “cycle not 

precluded”. Then the coefficients of W associated with this 

cycle are adjusted in order to satisfy the FRC condition. 

In summary, the novelty of the algorithm is the application 

of the specific combination of the cyclic shift values search 

and coefficient selection for structured GF(q) LDPC parity 

check matrix construction. 

 

V. RESULTS 

A number of simulation experiments have been made in 

order to examine performance of the codes that can be 

obtained with the proposed code construction algorithm. We 

have constructed structured LDPC codes over Galois Fields 

of various orders, with various block lengths N and submatrix 

sizes P. Some of the results are presented in this section. 

As a performance reference to the proposed algorithm we 

use two other approaches: 

 Structured codes with the same seed matrix, but cyclical 

shifts as well as non-zero coefficients selected 

randomly. We call those codes “Random” in figures. 

 Non-structured codes (submatrix size P=1) constructed 

with binary PEG algorithm, in which ones are 

substituted by random coefficients from the given 

Galois field. We call those codes “Rand. Coeffs” in 

figures. 

Comparison with the former method shows significance of 

the proper cyclic shifts selection and comparison with the 

latter method shows significance of the coefficients choice. 

Simulation results for rate-1/2 GF(24) and GF(26) LDPC 

codes are presented in Fig. 4- Fig. 5 respectively. We provide 

Frame Error Rate (FER) as well as Bit Error Rate (BER) 

curves in the function of Signal to Noise Ratio (Eb/N0). The 

block size is 2400 bits in both cases, which gives N=600 

symbols in the GF(24) case and N=400 symbols in the GF(26) 

case. We used the Binary Input AWGN (Additive White 

Gaussian Noise) channel model and the belief propagation 

decoding algorithm [2] for these simulations. 

 

 
Fig. 4. GF(24) codes performance over AWGN channel. 

 

Performance of the codes constructed with the proposed 

algorithm is significantly better than the reference codes of 

the same parity check matrix size. This observation confirms 

that both cyclic shifts selection and coefficients selection is 

important in “good” parity check matrix construction of 
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structured GF(q) LDPC codes. Similar conclusion can be 

drawn based on results for other block sizes, submatrix sizes 

as well as other communication system and channel models. 

 

 
Fig. 5. GF(26) codes performance over AWGN channel. 

 

VI. CONCLUSION 

The complex algorithm for the structured nonbinary LDPC 

codes construction has been presented in the paper. Two 

main stages of the algorithm are the seed matrix construction 

and matrix expansion. The novelty of the algorithm is the 

application of the specific combination of the cyclic shift 

values search and coefficient selection in the stage of the seed 

matrix expansion. 

The algorithm aims to reduce the number of low-length 

cycles with low external connectivity (EMD) in the Tanner 

graph by a proper cyclic shift value selection for the parity 

check matrix submatrices. This heuristically reduces the 

number of small Stopping Sets and Trapping Sets that are 

harmful to the code performance. At the same time the proper 

non-zero coefficient selection method is applied with the 

so-called FRC condition for the cycles that cannot be 

removed. 

A number of structured GF(q) LDPC codes has been 

constructed making use of the proposed algorithm. 

Performance of the codes constructed with the algorithm is 

generally better than performance of the codes obtained with 

two reference algorithms for structured and non-structured 

codes. This confirms the effectiveness of the proposed 

algorithm. The nonbinary codes outperform their binary 

counterparts and the structured form of the parity check 

matrix enables efficient hardware decoder implementation. 
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