Six Sigma DMAIC: Process Improvements towards Better IT Customer Support

Noor Nashriq Ramly, Member, IEDRC, IASCIT, and Lee Kah Yaw

Abstract—In the IT Service Management (ITSM) business nowadays, companies are struggling with ways to handle and align IT services with business needs and underpin the business core process. Since these IT companies are relying on customers to generate their profits, there has been increasing need to take care of customer complaints and issues effectively. Proper processes and procedures need to be implemented according to certain compliance standards so that customer needs will still be their top most priority while at the same time help to facilitate business change, transformation and growth to be aligned with company vision. Looking at trends of customer issues volume, there is increasing needs to address these numerous daily activities to ensure effective customer support being practiced by the organization. This paper discusses on the improvement carried out to reduce the number of IT infrastructure support issues using Six Sigma DMAIC approach in MIMOS. The tools and techniques taken as well as key steps that led to sustainable improvement are explained according to five phases of Six Sigma DMAIC in the later sections. With this study, it is hoped that this paper would be a useful guide to companies that are facing with the same issues and intend to improve total customer related support in their organization.

Index Terms—Six Sigma DMAIC, ITIL, ITSM, Cost To Quality (CTQ), Mistake Proofing.

I. INTRODUCTION

MIMOS IT Department has been implementing ITIL framework for their organization for nearly five years now. This has been a continuous effort and the implementation has helped us to strategize and properly align our IT business core process according to management vision and mission as well as customer needs. However, looking at the trends of customer complaints and request, there is urgent need for the management to pause and start analyzing the current situation to ensure that we do not astray from the right track. Appropriate problem solving methodology needs to be introduced in order to investigate the root cause of the current issues and carry out the improvement plan based on the findings.

One of the most popular and effective problem solving methodologies apart from TRIZ [1] and PDCA [2] is Six Sigma DMAIC. First developed by Motorola in 1980's, it contained a set of practice designed to improve manufacturing processes and eliminate defects. Its application was subsequently extended to improve existing business processes such as in IT, banking, and healthcare business [3]. The power of Six Sigma DMAIC methodology lie on its systematic approach that governed by rigorous steps in its five phases–Define (D), Measure (M), Analyze (A), Improve (I) and Control (C); hence the acronym (Fig. 1).

Fig. 1. DMAIC phases

Six Sigma DMAIC was chosen ahead of other methodologies due to its ability to improve certain process by eliminating defects in the existing process and the probability for defects to happen in near future is nearly impossible. The goal is not 99%, not even 99.9%, but 99.999996% statistically free from defects [3]. Normally, this methodology is used by organization when dealing with bottom line benefits or customer satisfaction [4]. In other words, this methodology can help us to deliver sustained defect-free performance with highly competitive quality costs over the long run [3]. This was actually backed up by former General Electric (GE) CEO, Jack Welch in 90's through astounding dramatic improvement in the company after implementing the Six Sigma DMAIC methodology [5].

In Section 2, this paper discusses in detail the key tools, techniques used as well as steps taken in every phase of Six Sigma DMAIC. The last two sections describe briefly our conclusion and future work based on this study.

II. APPROACH TO SIX SIGMA DMAIC

A. Define Phase (D)

1	Business Cas	e	Problem Statement
By reducing 25% of overall ticket, estimated cost savings through this efforts as below: 1) FTE (RM8.8K) 2) Projects (RM7K) Total cost savings is RM13.8K (breakdown on the next page)		elow:	Currently, the performance of volume of the tickets was -9tickets per week measured from July 2010 to Dec 2010 Therefore, there is need for an improvement project to address numerous support issue/request that usually used up most of CE time. By reducing the workload on support task, CE can contribute more on the industry project.
(Goal statemer	nt	Project scope
Metric	Current level	Goal / Target	Closed tickets for Infrastructure Tickets.
Count of ticket	~9 tickets per week	25% reduction of current baseline	Starts with: Initiate user request from system Ends with : Closure of submitted request
	Project plan		Team Selection
Phase	Start	End	Champion: Thillai Raj
Define	Feb 14, '11	Feb 28 '11	Mentor : Lee Kah Yew
Measure	Mar 21, '11	Apr 18, '11	GB: Noor Nashriq Ramly
Analyze	May 16, '11	June 30, '11	Member : Haris Aziz
Improve	July 01, '11	July 31, '11	Member : CE Infrastructure Group
Control	Aug 01, 11	Aug 26, '11	Member: -

Fig. 2. Team charter

The focus of this phase is defining the problem that requires solution and ended with clear understanding of

Manuscript received September 10, 2012; revised September 24, 2012. Noor Nashriq Ramly and Lee Kah Yaw are with MIMOS Berhad (nashriq.ramly@mimos.my).

scope and evidence of management support in order to guarantee the commitment from stakeholders involved [6]. Apart from that, we identified customer requirements that consisted both internal and external stakeholders. This information was captured in Team Charter for proof of requirement and commitment [7] (Fig. 2).

To come out with good justification and business case for the project, we have collected six months data from our Service Desk System. These data ranged from July 2010 to Dec 2010. Summary of the data is shown in Fig. 3.

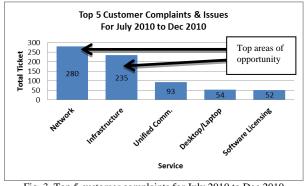


Fig. 3. Top 5 customer complaints for July 2010 to Dec 2010

We concluded that Network and IT Infrastructure were the top two services of customer complaints and requests. However, as Network had been identified for the next improvement project, we put focus on IT Infrastructure tickets that constituted about 235 issues in about 6 months period, with an average of ~39 issues per months which translate to average of 9 issues per week. By reducing 25% of overall tickets, estimated cost savings contributed from Full-Time Equivalent (FTE) staffs and project support effort is RM6.8K and RM7K respectively per year. Thus, total cost savings from these two areas was RM13.8K per year.

Though the cost saving was not huge, this improvement was crucial in a way that technical personnel could put focus on their time and effort to manage other bigger impact improvement projects rather than keep putting effort in repeated daily activities. In addition, IT organization would have more time to put focus in other tactical and strategic activities that provides higher impact to their business.

B. Measure Phase (M)

Fig. 4 shows the steps that taken to complete Measure phase. During measure phase, we understood how the current processes were performing by using process mapping

technique such as Top Down Charting that was further derived from SIPOC. SIPOC is an acronym for supplier, input, process, output and customer. SIPOC was used to define project boundary and scope to ensure that we could put focus on the real problem [8]. It was constructed to show key elements that involved in our ticketing process e.g. input, process, output indicator and etc (Table I).



Fig. 4. Steps taken in measure phase

TABLE I: SIPOC DIAGRAM

Supplier	Input	Process	Output	Custom er
User	False ticket	Create ticket	Knowledge Base (KB)	User
Network/I nfra Engineer	Unsupporte d services	Investigate issue / request	Created ticket	Enginee r
	Duplicate ticket	Seek expertise	Solution	
	Expertise	Work on the solution	Workaroun d	
		Confirm ticket resolved		
		Update Knowledge Base (KB)		

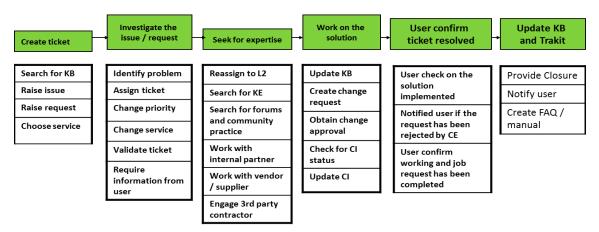


Fig. 6. Top down chart

Next, we came out with Top Down Chart to identify the high-level activities that are important to the overall process and demonstrate how the process will look like after streamlining it by removing the unnecessary and inefficient steps that currently exist as shown in Fig. 6.

Through this process, we identified critical processes that affected our Project Y (performance measure) and came out with Critical to Quality (CTQ) specification table as depicted in Table II.

TABLE II: CTQ SPECIFICATION

CTQ (Project Y)	Operation Definition	Goal
Weekly average	Issues raised and	Reduce weekly
number of issues for	captured from Helpdesk	average number of
complaints and	System for IT	issues for complaint
request	Infrastructure	and request by 25%

This operation definition defines a clear and concise guide of what and how properties are measured and their linkage to critical business requirements and as well as goal of this project [9]. After that, data collection was planned to quantify their actual and current performance against the defined CTQ (Refer Table III).

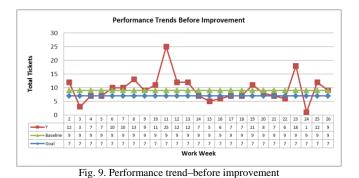

TABLE III. DATA COLLECTION I LAN					
Performance	Where	Sample	Who	When	How
Measure		size			
Average ticker	Seervice	100%	Noor	Jan to	100% and
count per	Desk	from Jan		July	automated
week	Ticket	to July		2011	
		2011			

TABLE III: DATA COLLECTION PLAN

The initial performance before improvement is depicted in Fig. 9. We concluded that the baseline performance of issues ticket volume raised was average of ~9 issues per week versus the improvement goal average of ~7 issues per week (25% improvement)

C. Analyze Phase (A)

Summary of steps taken in measure phase are depicted in Fig. 10. We started with Cause and Effect Analysis to find and shortlist the critical causes (X's) that potentially given impact to Project Y. These activities were carried out through Cause and Effect Diagram (Fishbone) and then proceeded to generate Cause and Effect Matrix (C & E Matrix) as shown in Fig. 11 and Fig. 12.

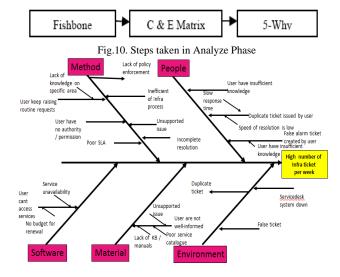


Fig. 11. Cause and effect diagram (fishbone)

	count of ticket	<<< <output indicators<="" th=""></output>
	10	<<<< <importance< th=""></importance<>
Input/Process Indicators	Correlation of Input to Output	Total
service unavailability	9	90
inefficient process	7	70
poor service catalogue	6	60
Lack of knowledge	6	60
work culture	6	60
Knowledge base (manuals)	5	50
false ticket	5	50
incomplete resolution	5	50
Lack of policy enforcement	5	50
different users with same issues	4	40
response time	4	40
unsupported issue	4	40
duplicate ticket	3	30
permission	3	30
policy enforcement	3	30
poor SLA	3	30

Fig. 12. Cause and effect matrix As continuation from Cause and Effect Analysis, 5-Why

TABLE IV: 5-WHY ANALYSIS	
--------------------------	--

Shortlisted Root Cause	Why1	Why2	Why3	Why4	Actionable
Poor service catalogue	User are not aware of CE supported services	Service Catalogue is not properly communicate	Catalogue is not updated, reviewed validated	N/A	Defined & validate CE Service catalogue. Proper communication need to be done to user.
Service	Machine down	Hardware failure	Maintenance issue	Out of budget	No.
unavailability	Service down	Service malfunction	Wrong configuration	User not well-trained	Provided configuration training to users
User Knowledge of specific area	User has insufficient knowledge	Ignorance	No training provided	N/A	Provided configuration training to users
	Lack of manual	Process is not standard	Process is not well-defined	N/A	Defined & validate CE core processes.
Inefficient process	Too many process in place	Process is not suitable for certain cases	No standard process in place	Process is not well-defined and validated	Defined & validate CE core processes.

Analysis was constructed for every selected X's (refer Table IV). These validation activities are carried out over and over again through peer review as well as subject matter expert (SME) sessions until absolute root cause have been selected and verified. This activity ensured that we broke down the cause into more explicit elements thus obtained the correct and absolute root cause for the improvement rather than taking actions that were merely band-aids [10].

D.	Improve	Phase	(I)
	-		

Significant/C ritical X's	Root cause	Potential Solutions
inefficient proc ess	Recurring requeston one-time backup.	Using FreeNas for one-time backup automation
inefficient process	Hardware failure is done through reactive monitoring & manual.	Proactive detection on HP hardware faulty detection
inefficient process	No visibility on storaga utilization & user keep requesting more requestfor new storage	Monthly review on data management & generate actions accordingly
Inefficient process	No proper & standard process for server request	standard process for new server request
inefficient process	Multiple request raised for one specific project - low visibility	consolidate point of requests by team leads/ projects
Inefficient process	Multiple PIC for specific project- intend to create duplicate tickets & affect communication	Single point of contact for infra requests for every project
inefficient process	User creation is done separately with server request	User creation done in every new server request.
Inefficient precess	Reactive detection on user accountissue	Performed quarterly LDAP account maintenance
inefficient process	No standard form/ process for Grid account maintenance	Centralized account maintenanc for Grid
Inefficient process	Firewall request is done separately with server request	Firewall request is embedded in new server request

Fig. 14. Potential solutions

In response to root causes found, various set of corrective actions (solutions) were considered and selected for implementation (see Fig. 14). Selection of possible solution to be implemented was carried out through rank solution table (see Fig. 15). It was expected the selected solutions would eliminate or at least minimize the impact of root cause to the problem.

			Sigma Level	Sigma Time to _evel Implement		Cost/ Benefit	< <criteria< th=""></criteria<>
			10	8		6	< <importance< th=""></importance<>
No	X's	Possible Solutions		Rat	inas	3	Total
1	Inefficient Process	Using FreeNas for one-time backup automation	9	7		7	188
2	Inefficient Process	Proactive detection on HP hardware faulty detection	9	7		7	188
3	Inefficient Process	Monthly review on data management & generate actions accordingly	8	5		6	156
4	Inefficient Process	standard process for new server request	8	7		8	184
5	Inefficient Process	consolidate point of requests by team leads/ projects	8	7		7	178
6	Inefficient Process	Single point of contact for infra requests for every project	7	7		7	168
7	Inefficient Process	User creation done in every new server request	8	9		9	206
8	Inefficient Process	Performed quarterly LDAP account maintenance	7	8		7	176
9	Inefficient Process	Centralized account maintenance for Grid	8	7		6	172
10	Inefficient Process	Firewall request is embedded in new server request	9	9		6	198

Fig. 15. Rank solutions

To assess effectiveness of solutions implemented, a pilot

run was planned. Pilot plan was constructed as in Fig. 16.

Corrective Actions				1
	Resp	Start Date	Due Date	Status
Ising FreeNas for one-time ackup automation	Sheikh	July 01, '11	July 31, '11	Closed
roactive detection on HP ardware faulty detection	Hafiz	July 01, '11	July 31, '11	Closed
Nonthly review on data nanagement & generate actions ccordingly	Hafiz	July 01, '11	July 31, '11	Closed
tandard process for new server equest	Hafiz	July 01, '11	July 31, '11	Closed
onsolidate point of requests by eam leads/ projects	Aziz/Hadi	July 01, '11	July 31, '11	Closed
ingle point of contact for infra equests for every project	Aziz/Hadi	July 01, '11	July 31, '11	Closed
Iser creation done in every new erver request	Hilmi	July 01, '11	July 31, '11	Closed
erformed quarterly LDAP ccount maintenance	Hilmi	July 01, '11	July 31, '11	Closed
entralized account maintenance or Grid	Hilmi	July 01, '11	July 31, '11	Closed
irewall request is embedded in ew server request	Anan	July 01, '11	July 31, '11	Closed

Fig. 16. Pilot run plan

The finding derived from the pilot plan was plotted in a control chart as depicted in Fig. 17. We can see that there are positive improvement showed after solution has been carried out i.e. center line before and after improvement is 9.4 and 7.05 respectively.

One-Sample-T Test was performed to statistically validate the improvement results against the project baseline that was first defined in Project Charter. Fig. 18 below shows the statistical analysis result of One-Sample T Test. The practical conclusion as derived from statistical conclusion is that the weekly average number of complaints and requests was significantly reduced as compared to baseline; as p-value is less than 0.05.

E. Control Phase (C)

In order to ensure the gain is maintained over the long term, a control plan was generated and handed over to process owners for implementation as listed in Table V.

Generally, the plan outlined the significant factors/parameters, the responsibilities personnel and how they were controlled and monitored by means of a set of control methods such as standard procedures, control charts and mistake proofing. Also, it detailed down the contingency plan for each significant factor/parameter should an out of control situation occurred [9].

The improved process mapping should cover any modifications that been identified in the previous phase. It should be reviewed and updated as needed so that everyone in the team is aware of the new arrangements. This is particularly crucial if multiple improvements were made and the new process is substantially different from the original process (see snapshot of improved process mapping in Fig. 20).

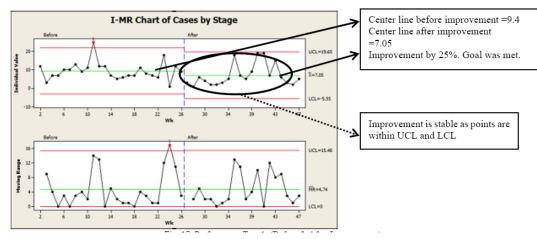


Fig. 17. Performance trends (before & after improvement)

One-Sample T: After Improvemen Test of mu = 9.4 vs < 9.4 Variable N Me After Improvement3 21 7.	an StDev S	95% Upper E Mean Bound T P 1.26 9.31 -1.80 0.044
1 sample T - test	P value =0.044	Reject Null Hypothesis
Ho p > 0.05 : μ _{after} = 9.4 Ha p < 0.05 : μ _{after} < 9.4	Conclusion	The improved processes performance was significantly lower than 9.4 cases/week (baseline). The improvement action taken were considered effective.

Fig. 18. One-sample T: improvement validation

Parameter	Control Method	Control Limit	Frequency	Resp.	Contingency Action Plan
IT Infra Ticket Count	I-MR charts	Max 13 issues per week (UCL)	Weekly	Nashriq / Hadi	Perform RCA if exceed.
Storage Utilization Reviews	Trend charts for storage utilization	50% of storage is more than 3 years old	Monthly	Hadi	Reclaim unused storage / buy additional storage

TABLE	v٠	SOME	E THE	ITEMS		NTROI	ΡΙΔΝ
TADLE	ν.	SOME	JF I HE	I LEWIS I	$m \cos$	VIKUL.	LAN

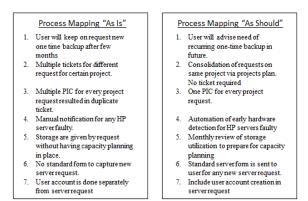


Fig. 20. Process changes/reduction: before vs. after

Mistake proofing is a system that is designed to ensure no possible mistake can be done in the process. Normally it is carried out in areas that have repetitive and manual tasks performed. In our case, one of the mistake proofing that we have carried out is on the detection method using System Insight Manager that acts as early detection failure for HP server. It will automatically send email to HP for any abnormal activity for HP servers that would in future effect server unavailability (see Fig. 21).

System Status 🛛 🕄 🖯	Tools . Deploy . Configure	* Diagnose * Reports * Tasks & Logs * Options * Help *	
gend Custonize	All Systems: Critical U	Uncleared Events Having	2
pdated: Fri, 8/12/2011, 3:37 PM WST 9 V at. O 8 61 20 2579 Uncleared Event Status	Event Details: A Service In	ncident has been reported (Type 4).	-
sarch 🛛	Event Identification and Details		
dvanced Search Tool Search	Event Sevenity	😵 Critcal	
rstem and Event Collections	Cleared Status	Not cleared	
Customize	Event Source	1ab95	
Al Systems	Associated System	ab95	
All Events	Associated System Status	O tomal	
Systems 🔺	Event Time	Wed, 6/15/2011, 2:03 AM WST	
Private Shared Systems by Type	Description	This event will be sent any line a service incident is reported. A service incident is generated when it is determined that a serviceable event has occurred based upon analysis of system- initiated events. User Action: Refer to the Recommended Action under the event details section.	
All Systems	Assignee		1
All Servers	Comments		
Storage Systems	Case Status	Closed	
All Racks	Case Id	4630920282	
All Enclosures	Service Event Source	Renote Support	
All Networking Devices All Printers All Management Process	Service Event Details		
All Virtual Connect Doma	Variable Description	Value	

Fig. 21. Detection method (mistake proofing)

Sample of storage utilization that are used in monthly review are depicted in Fig. 22. These are currently used to derive plans for capacity management so that we can predict utilization of storage in future. Hence this would help in minimizing volume of storage issues in the future.

Fig. 22. Sample of storage utilization chart.

Another point to be considered while closing the project is replication opportunity that can be carried out in other respective business units and processes. Replication defines as extending a successful solution across several other business units with identical or similar process. This would save time and cost to the organization as the solution is already implemented and proven. Fig. 23 shows the replication plan carried out in our organization.

Solution	Replication			
Solution	Process	Location	When	
Consolidate point of requests by team leads/ projects	Multiple tickets for different request for certain project.	Network Tickets	June 2012	
Single point of contact for infra requests for every project	Multiple PIC for every project request resulted in duplicate ticket.	Network Tickets	June 2012	

Fig. 23. Replication Plan

III. CONCLUSION & FUTURE WORK

Through this improvement project, we found that volume of customer complaints and requests had been successfully reduced to 75% of initial volume of IT Infrastructure ticket. This result proved that our Six Sigma DMAIC approach had effectively improved our overall process by finding the root cause and selecting the best solutions for high volume IT Infrastructure issues that we faced previously. However, we understand that continuous monitoring need to carry out from time to time to ensure that any deviations from control targets are identified and corrected before they result in defects and subsequently negatively affecting improvement effort that took place.

We plan to continue implementing Six Sigma DMAIC to other areas of services as well. Through this initiative, we can ensure that we cover all improvement areas needed that are related to issues tickets volumes that may affect our overall customer satisfaction in future.

ACKNOWLEDGMENT

Author would like to thank our MIMOS CTO Thillai Raj Ramamanathan for sponsoring this improvement project and Mohd Haris Aziz for supervising until project completion. Last but not least, special thanks to Infostructure team for cooperation and best teamwork while implementing the Six Sigma DMAIC.

REFERENCES

- K. Barry, E. Domb, and S. Michael. (2012). Triz What is Triz, The Triz Journal. *Real Innovation Network*. [Online]. Available: http://www.triz-journal.com/archives/what_is_triz/. Retrieved 16 April
- K. G. Bulsuk. Taking the First Step with PDCA. (2 February 2009).
 [Online]. Available: http://www.bulsuk.com/2009/02/taking-first-step-with-pdca.html

- [3] G. Tennant, SIX SIGMA: SPC and TQM in Manufacturing and Services, Gower Publishing, Ltd, 2001.
- [4] S. Ray, P. Das, and B. K. Bhattachrya, "Improve Customer Complaint Resolution Process Using Six Sigma," 2nd International Conference on Industrial Engineering and Operations Management (IEOM 2011), 2011.
- J. A. Byrne. (Aug 6, 1998). How Jack Welch Runs GE. Business Week. Online. Available: http://www.businessweek.com/1998/23/b3581001.htm
- [6] R. Shankar, Process Improvement Using Six Sigma: A DMAIC Guide, ASQ Quality Press, 2009.
- [7] T. Bertels, *Rath & Strong, Rath & Strong's Six Sigma Leadership Handbook*, Wiley, February 2003.
- [8] F. Soleimannejad, Six Sigma, Basic Steps & Implementation. AuthorHouse, May 17, 2004.
- [9] B. S. El-Haik and Adnan Shaout. *Software Design for Six Sigma: A Roadmap for Excellence*, Wiley, 2010.
- [10] F. W. Breyfogle, "Integrated Enterprise Excellence," Business Deployment: A Leaders' Guide for Going Beyond Lean Six Sigma and the Balanced Scorecard, vol. II, Bridgeway Books, 2008.

R. Noor Nashriq is a member of IACSIT and IEDRC. She was born on August 27, 1982, in Perak, Malaysia but she grew up in Perlis, Malaysia. She graduated from high school at Sekolah Sains Pokok Sena, Kedah, Malaysia. Then she earned her degrees in Information Technology from University Technology of PETRONAS, Perak, Malaysia. Her minor's field of study was Corporate Management. She started her career in 2005 with IT software and

application development. In the early days, she extensively developed application dashboards for Engineering Computing department in Motorola Penang, Malaysia. Apart of that, she started to pick up more on the Quality Management including ITIL, Six Sigma and as well as project management. After 3 years, she moved to MIMOS Berhad for further career advancement. She works in MIMOS Berhad as System and Process Engineer. In MIMOS Berhad, she started focus more on the process improvement and optimization within her department as well as operation process automation throughout Infostructure. She was a certified Six Sigma Green Belt in early 2012.

She started involving in conference publication in 2011 with one paper published in ICMO 2011 on Operation Dashboard. Later in 2012, three more papers had been accepted for publications and one of them was on Six Sigma Implementation in ICEMT 2012. Her areas of research are Monitoring Dashboards, Process Optimization, Six Sigma, Green IT, Project Management, ITIL and Databases.

L. Kah Yaw was born in Negeri Sembilan, Malaysia on March 22, 1967. He graduated from University of Hertfordshire, UK with degree in Manufacturing System Engineering

He had closed to 20 years of solid working experience in the field ranging from Quality Engineering & Management to Six Sigma & Project Management. Since 2004, he was a certified Six Sigma Black Belt. Currently, he works in MIMOS

Berhad as Six Sigma Master Black Belt in Six Sigma program deployment that includes Statistical & Quality Tools training delivery and project coaching.

His first paper on Six Sigma was published in ICEMT 2012.