

Abstract—One challenge in data mining come from data

sorting problem which needs enormous computation power

when it comes to big data. While many machines and methods

have been developed to tackle this problem, most solutions are

either too expensive or too complex to be implemented in typical

companies, non-profit organization, and individual researchers.

One technique to tackle these difficulties is using volunteer

computing model. This paper suggests one adaptable sorting

model that can be used in such volunteer computing

environment. The model is generic so it can be adapted directly

in the existing application without the need to install additional

agent or server. The model was tested using 750,000 random

integer data. The tests were run 300 times each employing four

nodes and three nodes with different number of buckets and

number of data in a bucket, apparently those are faster than

sequential merge sort.

Index Terms—Data mining, parallel, sorting, volunteer

computing.

I. INTRODUCTION

Sorting is still one of the functions in data mining which

use a great deal of computation resources, especially when it

comes to big data. Many machines and methods were

designed to tackle with this problem with some great success.

Unfortunately, most of those machines and methods are

relatively expensive or complex to be implemented in typical

company, social organization, and individual researcher

hence hindering them to make the most of available big data.

This paper explores an alternative model for implementing

sorting algorithm using volunteer computing model.

Volunteer computing has been suggested quite some times

ago by [1]-[6] as an alternative to solve time consuming

applications. This type of computing works by breaking data

into smaller bits and distributes them into network of

volunteers. These volunteers process the data with their own

unused computer resources thus potentially make it more

efficient in terms of cost and computer utilization.

In this paper, we elaborate one of the characteristic of

volunteer computing is that it runs on embarrassingly parallel

connectivity. Though this trait is proven to be an advantage

for some applications, it can turn problematical for sorting

algorithm to solve some arbitrary live data. Therefore this

paper focuses on solving this problem. The model proposed

in this paper is a generic sorting algorithm model that can be

used in an embarrassingly parallel connectivity situation.

Manuscript received June 14, 2013, revised August 12, 2013.

Y. E. Soelistio is with the Faculty of ICT, Universitas Multimedia

Nusantara, Tangerang, Indonesia (e-mail: yustinus.eko@ umn.ac.id).

P. Yugopuspito is with Research and Development Computer Lab.,

Universitas Pelita Harapan (e-mail: pujianto.yugopuspito@uph.edu).

II. RELATED WORKS

Previous works have been conducted by the author [7],

[8].Those papers suggest divide and conquer model to solve

travelling salesman problem (TSP) and geographic

simulation involving large number of data in volunteer

computing environment. The techniques used in those

models are using pivot point to split and merge the data, and

categorizing data by clients’ specifications.

In TSP problems, map is segregated into several

mini-maps. These mini-maps connected to each other by

assigning one or more points in map as pivot point. The

numbers of points in mini-map are adjusted with clients’

specifications. Clients with higher specification are given

bigger maps with more points than lower-end clients.

This paper uses merge-sort algorithm as groundwork for

building the model. Many parallel sorting algorithms had

been proposed using similar divide and conquer method

[9]-[11]. The model proposes in this paper modify divide and

conquer technique used in the previous researches so it can be

applied in volunteer computing environment.

In this paper we introduce a new sorting algorithm design,

by means of data segregation which can be run on

embarrassingly parallel connectionism, and create a proof of

concept for the design.

III. ALGORITHM DESIGN

The algorithm can be run on multiple core or multiple

computers. This paper will use the term nodes to indicate

cores and computers. The main problem in sorting some

arbitrary live data in embarrassingly parallel environment is

the non-consecutive finishing time on each node. For

example, there is no guarantee that node will finish earlier

than node . Therefore master node will not know

whether data in or not. Moreover if the data given

from to volunteer’s nodes are random then data in each

 will only be sorted locally in .

The algorithm in this model approaches the problem just

like merge-sort where it divides the data into atomic member

and sorts them by merging each part sequentially. However,

this model does not split database into single data. It splits the

database into some set of data so each set will have a

maximum members to be sorted individually in each node

 then merge them back into one. Value of can be a single

value thus applied in all , or vary according to specification

of like proposed in [7], [8]. This paper used single value of

 to test the model.

If all the data are distributed in a manner such that

 and then at least nodes will

have equal load among them.

Simple Parallel Sorting Model for Embarrassingly

Parallelism Environment

Yustinus Eko Soelistio and Pujianto Yugopuspito

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 4, No. 1, February 2014

52DOI: 10.7763/IJEEEE.2014.V4.301

To guarantee that all members of is in the right

sequence to all members of , this model classify all data

as buckets. These buckets are some set of array or list which

have index 1 to . Each bucket has members range from

 where <
for ascending sort and > for

descending sort. This paper use interval method to determine

 , though any other statistical method such standard

deviation can also be used.

All buckets have maximum number of members. Each

of these buckets will be sent to to be sorted. If all arbitrary

members in is smaller than in then it is

guaranteed that

 < (1)

Hence by mapping with corresponded , then will

be able arrange back in the right sequence.

A. Model and Complexity

Fig. 1. Three steps sorting model.

The model uses three steps modules to run this sorting

algorithm like illustrated in Fig. 1. First step, surveys the

data to check whether it is sorted or not. When it is not then

 creates buckets by calculating the optimal value of and

 . The complexity of this step is , where is the number

of data. To put the data into buckets, send parts of the

data to which categorize it into buckets. These buckets

then sent to to be finalized and distributed.

Second step is the actual sorting process. will send and

map to to be sorted. If the algorithm sort database by

distributing arbitrary data to nodes , where

 and is the maximum available nodes, then the

complexity will be

 (2)

Complexity shown in (2) is the complexity of the parallel

model, not the sorting process itself. The sorting process

happened in has its own complexity, depends on what

algorithm it uses. For example, if all use merge-sort then

the complexity of the second step will be (2) multiply by

 . If is substituted by then in general the

complexity will be

 (3)

The third step is when received bucket from and

save it in appropriate order in database . Every put in

will be in the ordered sequence like in (1), thus finishing the

sorting process. The complexity in this step varied between

the best case and worst case , mostly depends on

data structure of . Indexed data structure like array will

have , and non-indexed like one-linked list will have

 .
The first step must be run sequentially since it has to

classify all data into buckets. However, the second and the

third step in this model can run as parallel thus the total

complexity become

 (4)

Mathematically, (4) is less complex compared to original

merge-sort when with .

B. Model for Live Data

For sorting live data, this model employs marking. First it

marks the beginning and the end of the data and called it

database . This database will be sorted using the three steps

modules described above and produces database .

Any new data will be sorted only after is fully sorted.

Since this paper uses interval method to define then the

model will calculate new value when the new data are

breaching the lowest and the highest value of . The flow of

algorithm for this model can be seen in Fig. 2.

Start

Categorize to

buckets

Prepare buckets

Send buckets

Distribute bucktes

Sort

Send sorted buckets

Merge

Data converted

to buckets ?
No

End

All buckets

sorted ?

Server (PM)

Volunteers (Px)

Send m data to Px

New data exist

?

Yes

No

Yes

NoYes

Preparing data

source

Fig. 2. Algorithm flow.

IV. TESTING

The model was tested using 750,000 random integer data.

The tests were run 300 times each employing four nodes and

three nodes with different and values. First test was

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 4, No. 1, February 2014

53

using four nodes with and . Second test

used four nodes with and . Third test used

three nodes with and . All nodes used

merge sort to sort the data and connected in a LAN

environment, as shown in Fig. 3. Tabel I shows the average

results.

Database

Connection

interface

Server

Connection

interface

Bucket

process
Merge-sort

Client 1

Connection

interface

Bucket

process
Merge-sort

Client 2

Connection

interface

Bucket

process
Merge-sort

Client 3

Connection

interface

Bucket

process
Merge-sort

Client 4

Merge

Fig. 3. Volunteer computing arrangement.

TABLE

I:

AVERAGE TEST RESULTS

Test 1

Bucket:

0.0080747

Sorting & Merging:

0.1362573

Total:

0.144332

Test 2

Bucket:

0.0095788

Sorting & Merging:

0.1024624

Total:

0.1120412

Test 3

Bucket:

0.0109169

Sorting & Merging:

0.1552226

Total:

0.1661395

Sequential Merge-sort:

0.2086206

 Although this was only a trivial test, there are some

patterns shown. First, the more nodes used, the less time

required to finish the first step. Second, the time needed

depends on value of . All tests are also faster then

sequential merge-sort. However, this test was conducted on

LAN environment thus the system did not experience lost

connection or glitch. Further test on internet connectionism is
 required to verify its performance over sequential system.

Comparing to our previous results [7], [8], this model is

more flexible in terms of distributing and handling data. In

this model, each client can have different method to sort the

data. Furthermore, unlike pivot point method in [7] and [8],

bucket size and data size for clients in this model can be

easily adjusted between each cycle.

V. CONCLUSION

This paper explores one model to process arbitrary live

data in an embarrassingly parallel connectivity situation. The

model is a three steps method which can be adapted by

modifying its parameters. This model had been tested,

although further validations are still needed. Further test

should use non-ideal connection environment for better

simulate volunteer computing environment such as the use of

internet connection and potential malicious volunteers. A

bigger and more varies data set are also needed for further

confirmation.

The model proposed in this paper can be customized by

modifying number of bucket, maximum data in a bucket, and

sorting algorithm in clients (, , and). can be compute

using statistic method such as interval and standard deviation.

 will directly influence work load in since is the

amount of data that will be sorted by an algorithm with

complexity. In the next attempt, it is possible to develop a

machine learning algorithm to obtain the best combination of

 , , and .

REFERENCES

[1] L. F. G. Sarmenta, “Volunteer comp,” Ph.D. Dissertation, Dept.

Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, 2001.

[2] D. P. Anderson, “Boinc: A system for public-resource computation and

storage,” in Proc. 5th IEEE/ACM International Workshop on Grid

Computing, 2004, pp. 4-10.

[3] C. Christensen, T. Aina, and D. Stainforth, “The challenge of volunteer

comp. with lengthy climate model simulation,” in Proc. First

International Conference on e-Science and Grid Computing, 2005, pp.

8-15.

[4] D. P. Anderson, E. Korpela, and R. Walton, “High-performance task

distribution for volunteer computing,” in Proc. First International

Conference on e-Science and Grid Computing, 2005, pp. 196-203.

[5] N. Z. C. Fülöp, “A desktop grid approaches for scientific computation

and visualization,” Ph.D. Dissertation, Dept. Comp. and Information

Sci., Norwegian University of Science and Technology, 2008.

[6] S. Yi, E. Jeannot, D. Kondo, and D. Anderson, “Towards real-time

volunteer distributed comp,” in Proc. The 11th IEEE/ACM

International Symposium on Cluster, Cloud, and Grid Computing,

2011, pp. 154-163.

[7] Y. E. Soelistio and P. Yugopuspito, “Disain implementasi TSP pada

lanscape Jakarta menggunakan volunteer computing,” Seminar

Nasional Teknologi Informasi, Universitas Tarumanegara, 2012, pp.

C2-10–C2-17.

[8] Y. E. Soelistio and P. Yugopuspito, “Penggunaan volunteer computing

di perguruan Tinggi,” Journal Ilmiah Ilmu Komputer, vol. 9, no 2,

March 2013.

[9] D. R. Helman and D. A. Bader, “A randomized parallel sorting

algorithm with an experimental study,” Journal of Parallel and

Distributed Computing, pp. 1-23, 1998.

[10] M. C. Albutiu, A. Kemper, and T. Neumann, “Massively Parallel

Sort-Merge Joins in Main Memory Multi-Core Database System,” in

Proc. VLDB Endowment, vol. 5, no. 10, 2012, pp. 1064-1075.

[11] S. Odeh, O. Green, Z. Mwassi, O. Shmueli, and Y. Birk, “Merge

path–parallel merging made simple,” in Proc. IEEE 26th International

Parallel and Distributed Processing Symposium Workshops & PhD

Forum, 2012, pp. 1611–1618.

Yustinus Eko Soelistio

management from Univesitas Pelita Harapan, in 2005 and

2008 respectively. Currently he teaches information

system and engineering at Multimedia Nusantara

University. His research

interests are parallel computing,

machine learning, and green computing.

Pujianto Yugopuspito

mechanical engineering in 1991 from Unversitas Gadjah

Mada, Indonesia; Master degree in software techniques for

computer aided engineering in 1996 from Cranfield

University, United Kingdom; and Doctor of Engineering in

computer science and communication engineering,

specialization in software methodology in 2001 from

Kyushu University, Japan. Since 2004 he is with Universitas Pelita Harapan.

His research interest includes software engineering, formal methods, high

performance computing, and mobile applications. He is a member of IEEE

and IAENG.

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 4, No. 1, February 2014

54

received his bachelor degree in

information engineering and master degree in

received engineer degree in

