
  

 

Abstract—During several years, the number of the malicious 

code and the methods for hiding them highly increases. The 

disseminating the malicious code commonly abuses general 

files in a way of hiding to avoid its existence from being 

detected. Among general files, the document files (DOC, PPT, 

XLS, PDF, etc.) can be easily used for malicious purposes. 

Therefore, we analyze the PowerPoint 2003 file based on 

PowerPoint 2003 file format document because it is commonly 

used by host users. In this paper, we briefly describe the 

PowerPoint 2003 file format and propose the methods that can 

be used to store the malicious code. In experiments, we verify 

whether the proposed methods work well or not. 

 
Index Terms—Malicious code, virus, PowerPoint.  

 

I. INTRODUCTION 

The Malicious code is one of the executable codes that 

aim to damage target host for malicious purposes. As IT 

technology is developed, malicious code has been made for 

many purposes such as disclosing personal information, 

occurring network traffic that are not intended and deleting 

system files, etc. [1]. Furthermore, the number of the 

malicious code increases [2], [3] and the methods for 

disseminating the malicious code became more complicated 

and sophisticated to avoid its existence from being detected 

by anti-virus detection. One of the most efficient methods to 

disseminate the malicious code is adding the code into a 

general file which has the space to include it. Common user 

cannot realize its existence because hiding in a general file 

makes the malicious code undetectable or the existence 

secret. To avert suspicion, attackers usually use the file such 

as DOC, PPT, XLS, PDF, etc. [2]-[4] which can easily 

pretend normal and unsuspicious. Among these files, 

MS-OFFICE document file is usually used. For example, a 

macro virus is a program written in the macro language 

included in Word document files [4]-[6]. When a Word 

document file that is infected by a macro virus is opened, the 

macro virus will copy itself into other file or make a new file 

which can be executed and infect the target system. It means 

other files subsequently could be infected if the infected 

document file is opened once. In MS-OFFICE document 

files, there are several formats (Word, Excel, PowerPoint, 

etc.). Among them, we have found the methods to make the 

 
Manuscript received June 14, 2013; revised August 2, 2013. This 

research was supported by Basic Science Research Program through the 

National Research Foundation of Korea (NRF) funded by the Ministry of 

Education, Science and Technology (2012 R1A1B3004161).  

Jiwoong Choi, Inhwan Kim, Seunghee Han, Sungmin Lee, and Jooseok 

Song are with the Computer Science Department, Yonsei University, Seoul, 

Republic of Korea (e-mail: {hope0371, ihkim, seungheeh, niji, jssong 

@emerald.yonsei.ac.kr).  

 

space in PowerPoint 2003 file which can include malicious 

code. 
TABLE I: STREAM AND STORAGE OF POWERPOINT 2003 

Name Contents 

Current User stream 
The most recent UserEdit offset of 

PowerPoint Document stream 

PowerPoint Document 

stream 
Most of the document data 

Pictures stream Embedded picture data 

Summary Information 

stream 
Meta data for the document 

Document Summary 

Information stream 
Meta data for the document 

Encrypted Summary 

Information stream 
Encrypted Summary Information stream 

Digital Signature storage Embedded signature data 

Custom XML Data storage Embedded  XML data 

Signatures stream Embedded signature data 

 

According to our results, the space can have data with 

variable length and PowerPoint 2003 application does not 

recognize its existence. Since PowerPoint 2003 file can be 

used for malicious purpose, we recommend that the space 

must be checked in anti-virus detection. 

The rest of this paper is organized as follows. PowerPoint 

2003 file format is discussed in Section II. The methods to 

store the malicious code in PowerPoint 2003 file are presented 

in Section III. Then the methods are experimented in Section 

IV. 

 

II. POWERPOINT 2003 STRUCTURE 

In this section, we show PowerPoint 2003 file format which 

is described in the PowerPoint 2003 file format document [7]. 

A. Properties 

PowerPoint 2003 file is following the OLE (Object Linking 

and Embedding) compound file format [8], [9]. In the OLE 

compound file format, the document file is composed of 

“stream” and “storage” which are binary data in a hierarchical 

structure. Like file and directory of the file system, stream and 

storage take the similar role respectively. Storage can contain 

either stream or storage in a hierarchical structure. Stream and 

storage contain a document file data and the names of them are 

different depending on each document file format. The stream 

and storage that compose a PowerPoint 2003 file is as follows 

in the Table I. Among them, the PowerPoint Document stream 

contains most of the document file data and it consists of a lot 

of “record”. And records are classified into two types, “atom” 

and “container” which is similar to stream and storage. Like 

storage, container can contain either atom or container. In 

other words, the PowerPoint Document stream is composed of 

Methods to Hide Malicious Codes in PowerPoint 

Jiwoong Choi, Inhwan Kim, Seunghee Han, Sungmin Lee, and Jooseok Song 

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

488DOI: 10.7763/IJEEEE.2013.V3.284



  

a collection of records in a hierarchical structure and each 

record refers a piece of the document file. 

 

 
Fig. 1. Record structure. 

 

B. Record Structure 

PowerPoint 2003 file format document describes many 

records that contain various meaning of a document file data. 

Fig. 1 shows the record structure [7]. Record structure is 

divided into record header and data. In front of a data part, a 

record header is placed. The values in a record header are 

used to identify and interpret a record data that follows. Thus, 

each record has a record header which interprets what a 

record contains in a record data.  

C. UserEdit Structure 

The PowerPoint Document stream is composed of one or 

multiple UserEdits which is conceptual unit and represents 

changes made by user. The PowerPoint Document stream 

has multiple UserEdits if the function “Allow fast saves” is 

enabled in PowerPoint 2003 application [10]. In this case, 

UserEdit is created newly or modified from the previous 

UserEdit and it is appended to the PowerPoint Document 

stream whenever the document file is written. Furthermore, 

UserEdit is composed of a set of particular records that are 

called “persist object” containing primary information of the 

document file. The persist object is a top-level object that 

can be independently persisted and includes a unit of a 

document file data such as slide, main master slide, notes, 

handout, etc.  

For example, SlideContainer record represents the slide 

data and NotesContainer represents the notes data. Fig. 2 

shows the interpretation flow of the PowerPoint Document 

stream for UserEdit unit.As described in Table I, the data of 

Current User stream represents where the most recent 

UserEdit is. And each UserEdit stores the offset for previous 

UserEdit except for the top of UserEdit whose start offset is 

0 when UserEdit exists more than one. So, the interpretation 

of the PowerPoint Document stream starts from Current 

User stream. After finding the offset of the most recent 

UserEdit, each UserEdit is found by the UserEdit chain 

sequentially. The Interpretation flow of the PowerPoint 

Document stream that includes multiple UserEdits for 

record unit is performed as Fig. 3 [7], [10]. Each UserEdit 

has one UserEditAtom and one PersistDirectoryAtom. 

UserEditAtom contains the metadata about UserEdit such as 

the offset for previous UserEdit, the offset for 

PersistDirectoryAtom and the file version, etc. 

PersistDirectoryAtom contains a persist object ID and offset 

pairs. A persist object ID is assigned to a persist object to 

distinguish itself from other persist objects. Therefore, each 

persist object in UserEdit can be found via 

PersistDirectoryAtom. 

 
Fig. 2. Interpretation flow of the PowerPoint document stream for UserEdit 

unit. 

 

 
Fig. 3. Interpretation flow of the PowerPoint document stream for record unit. 

 

1)  The start point that is the offset of the most recent 

UserEditAtom is gained from CurrentUserEditAtom 

of CurrentUser stream. Then read the most recent 

UserEditAtom. 

2)  If the offsetLastEdit field of the identified 

UserEditAtom is not 0, then read the previous 

UserEditAtom sequentially using the offsetLastEdit 

field until the offsetLastEdit field of the identified 

UserEditAtom is 0.  

3)  When the UserEditAtom whose offsetLastEdit is 0 is 

found, the corresponding PersistDirectoryAtom is 

read through the offsetPersistDirectory field of the 

identified UserEditAtom. The persist object ID and 

offset pairs are stored to the memory that we call 

recent records. Then, the pairs from each 

PersistDirectoryAtom that were identified in previous 

steps are read in reverse order and continually added to 

the recent records. 

4)  During adding a new pair to the recent records, if the 

persist object ID already exists in the recent records, 

the persist object offset from the new pair replaces the 

existing persist object offset for that persist object ID. 

When the all PersistDirectoryAtom are checked, the 

pairs in the recent records represent current data of the 

document file. Finally, using the pairs in the recent 

records, recent persist objects are interpreted 

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

489



  

III. METHODS TO STORE MALICIOUS CODES 

We developed the methods to make the spaces to store 

malicious codes in PowerPoint 2003 file. The methods that 

we have found are using previous UserEdit and the 

UnknownBinaryTag record.  

A. The Method of Using Previous UserEdit 

As we mentioned above, the PowerPoint Document 

stream may have multiple UserEdits and it seems not to have 

any other problem. However, there are some persist objects 

(records) that have not examined what it contains in 

interpretation process. We should notice that it can be 

possible for the previous UserEdit to be used to add some 

data unrelated with the document file. In interpretation 

process of the PowerPoint Document stream that has 

multiple UserEdits, when the duplicate persist object ID is 

discovered, it just deletes the old offset and adds the new one. 

This action deserves more than a passing notice because it 

just identify the data at the new offset without examining 

what it contains at the old offset. In other words, malicious 

codes can be inserted in the persist object at the old offset 

(the duplicate offset) and PowerPoint 2003 application does 

not examine the data. So, attacker can insert malicious codes 

into previous UserEdits as following steps:  

1)  Enable the function “Allow fast saves” in PowerPoint 

2003 application and then make new file [10]. 

2)  Modify the file more than once. 

3)  Find the persist objects in previous UserEdits among 

multiple UserEdits and replace the data of the persist 

objects with malicious codes. 

B. The Method of Using UnknownBinaryTag Record 

There is a name/value pair structure called programmable 

tags or ProgTags that contains document file data. The 

programmable tags are included in several container records 

as Table II [7]. DocProgTagsContainer contains the setting 

values for document level such as prohibited words, fonts, 

default text, etc. SlideProgTagsContainer contains the 

setting values for slide level such as slide creation time, 

linked slide, comments, etc. ShapeProgTagsContainer 

contains the setting values for shape level such as 

character-level formatting, paragraph-level formatting, etc. 

Since the supported functions are different in each 

PowerPoint application version, the programmable tags 

have been made to apply the setting values depending on the 

PowerPoint application version. According to the name of 

programmable tags, the setting values could be either 

applied or ignored on each PowerPoint application version. 

Therefore, PowerPoint 2003 file format document presents 

the container records that contain programmable tags and 

the names of programmable tags that should be permitted on 

each PowerPoint application version as Table III [7]. As 

described in Table III, the container records may contain not 

only the names that have to be applied but also 

UnknownBinaryTag record. If the PowerPoint application 

encounters a name of a programmable tag that is not in the 

permit name list, it interprets the programmable tag as 

UnknownBinaryTag record.  Otherwise, the programmable 

tag refers to KnownBinaryTag record. As the PowerPoint 

2003 file format document describes, UnknownBinaryTag 

record MUST be ignored and MUST be preserved regardless 

of what it contains in the data of programmable tags. This 

means malicious codes can be inserted to UnknownBinaryTag. 

So, the method of using UnknownBinaryTag record can be 

achieved as following steps:  

1)  Add new programmable tag or modify the existed 

programmable tags with the name that is not in the 

permit list. Then modify the length field of the record 

header for name part to appropriate value leaving the 

other fields unchanged. 

2)  Replace the data of the value part with malicious codes. 

Then modify the length field of the record header for 

value part to appropriate value leaving the other fields 

unchanged. 

3)  Modify the offset value for other records where 

PeristDirectoryAtoms follow UnknownBinaryTag. 

 
TABLE II:

 
KIND

 
OF PROGRAMMABLE TAGS

 
Record

 
Description

 
DocProgTagsContainer

 
Settings for document level

 
SlideProgTagsContainer

 
Settings for slide level

 

ShapeProgTagsContainer
 

Settings for shape level
 

TABLE III: NAME LIST OF PROGRAMMABLE TAGS 

Record Name Description 

DocProgTags 

Container 

___PPT9 PPT 97 ignores it 

___PPT10 PPT 97, 2000 ignore it 

___PPT11 PPT 97, 2000, 2002 

ignore it 

___PPT12 PPT 97, 2000, 2002, 

2003 ignore it 

Any other value UnknownBinaryTag 

SlideProgTags 

Container 

___PPT9 PPT 97 ignores it 

___PPT10 PPT 97, 2000 ignore it 

___PPT12 PPT 97, 2000, 2002, 

2003 ignore it 

Any other value UnknownBinaryTag 

ShapeProgTags 

Container 

___PPT9 PPT 97 ignores it 

___PPT10 PPT 97, 2000 ignore it 

___PPT11 PPT 97, 2000, 2002 

ignore it 

Any other value UnknownBinaryTag 

 

IV. EXPERIMENTS 

The methods have been experimented using POI (Poor 

Obfuscation Implementation) and OffVis (Office 

Visualization Tool) [11], [12]. POI is the JAVA libraries that 

help in analyzing the MS-OFFICE document file formats.  

OffVis provides functions that can modify and parse OLE 

document hierarchically. 

Firstly, the method of using previous UserEdit has been 

experimented by modifying the SlideContainer in previous 

UserEdit whose persist object ID is duplicate. Fig. 4 shows 

both original data and modified data. As we described before, 

the duplicated persist object does not identified and examined 

in the interpretation process. So, even though we modified the 

whole data of the SlideContainer, the document file is opened 

well without any notice of modification on the PowerPoint 

2003 application. 

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

490



  

 
Fig. 4. Modification of previous UserEdit. 

 

Secondly, the experiment for the method of using 

UnknownBinaryTag record has been done by modifying the 

existing DocProgTagsContainer. We modified the 

programmable tags whose name is “___PPT10” excluding 

the record header data. In Fig. 5, bottom one shows modified 

data with random binary values. As a result, we can say that 

the UnknownBinaryTag record is created. Even though we 

added the UnknownBinaryTag record with random binary 

values that have no relevance with the document file, the 

document file is opened without any problems on the 

PowerPoint 2003 application. 

 

 
Fig. 5. Modification of KnownBinaryTag to UnknownBinaryTag. 

 

V. CONCLUSION AND FUTURE WORKS 

In conclusion, we presented two possible methods to 

insert malicious codes in PowerPoint 2003 file by analyzing 

the PowerPoint 2003 file format document. According to 

our result of experiments, although the binary data that have 

no relation with the document file are included, the 

document file works well with no problems. So, we 

recommend that the space that we discovered must be 

checked on anti-virus tool or the malicious code detection. 

In future works, there are other MS-Office document file 

formats such as Word, Excel and these files are also very 

commonly used. Therefore, we will analyze other document 

file formats and find the method to make the space that can 

be used to add malicious codes. Moreover, we will make the 

methods to detect the space that we find.  

REFERENCES 

[1] A. Sprykin, V. Kiktenko, S. Galagan, and A. Kunitsky, “Malicious 

code testing in executable files,” in Proc. Modern Problems of Radio 

Engineering, Telecommunications and Computer Science Conf., 

Lviv-Slavsko, February 2008, pp. 632-634. 

[2] K. Selvaraj and N. F. Gutierrez, “The rise of PDF malware,” Symantec 

Corporation, June 2010. 

[3] Y. X. Gao and D. Y. Qi, “Analyze and detect malicious code for 

compound document binary storage format,” in Proc. 2011 Machine 

Learning and Cybernetics Conf, Guilin, July, 2011. 

[4] V. Bontchev, “Possible macro virus attacks and how to prevent them,” 

Computers & Security, vol. 15, no.7, pp. 595-626, 1996. 

[5] W. J. Li, S. J. Stolfo, A. Starvrou, E Androulaki, and A. D. Keromytis, 

“A study of malcode-bearing documents,” in Proc. Detection of 

Intrusions and Malware & Vulnerablility Assessment (DIMVA) Conf., 

July 2007, pp.231-250. 

[6] J. Munro. (July 2002). Antivirus research and detection techniques. 

Extreme Tech.. [Online]. Available: 

http://www.extremetech.com/article2/0%2C1558%2C325439%2C00.a

sp 

[7] PowerPoint (.ppt) Binary File Format, MicroSoft Co., February 11, 

2013. 

[8] Compound File Binary File Format, MicroSoft Co., January 18, 2013. 

[9] Apache Open Office. Microsoft compound document file format. 

[Online].  Available: 

http://www.openoffice.org/sc/compdocfileformat.pdf 

[10] J. Park and S. Lee, “Forensic investigation of Microsoft PowerPoint 

files,” Digital Investigation, vol. 6, pp.16-24, September 2009. 

[11] Apache Software Foundation. Apache POI open source project. 

[Online]. Available: http://poi.apache.org 

[12] Microsoft Co. Microsoft office visualization tool (OffVis). [Online]. 

Available: 

http://www.microsoft.com/en-us/news/press/2009/jul09/07-27BlackHa

t09PR.aspx 

 

 

Jiwoong Choi received the B.S degree in Computer 

Science from Kyonggi University, Suwon, Republic of 

Korea, in 2011. He is currently working toward the M.S. 

degree in Computer Science at Yonsei University, Seoul, 

Republic of Korea. His research interests include 

information security and wireless ad hoc networks.  

 

 

 

Inhwan Kim received the B.S and M.S degree in 

Computer Science from Ajou University, Suwon, 

Republic of Korea, in 2007 and 2009, He is currently 

working toward the Ph.D. degree in Computer Science at 

Yonsei University, Seoul, Republic of Korea. His 

research interests include location security in vehicular ad 

hoc networks and denial of services in wireless networks. 

 

 

Seunghee Han received the B.S degree in Computer 

Science from Yonsei University, Wonju, Republic of 

Korea, in 2011, He is currently working toward the Ph.D. 

degree in Computer Science at Yonsei University, Seoul, 

Republic of Korea. His research interests include 

enhancement throughput and wireless networks security. 

 

 

Sungmin Lee received the B.S degree in Computer 

Science from Inha University, Incheon, Republic of 

Korea, in 2007, He is currently working toward the M.S. 

degree in Computer Science at Yonsei University, Seoul, 

Republic of Korea. His research interests include network 

security and cryptography. 

 

 

Jooseok Song received the B.S. degree in Electrical 

Engineering from Seoul National University, Republic of 

Korea, in 1976, and the M.S. degree in Electrical 

Engineering from Korea Advanced Institute of Science 

and Technology, Republic of Korea, in 1979. In 1988, he 

received the Ph.D. degree in Computer Science from 

University of California at Berkeley.  

Naval Postgraduate School, Monterey, CA. He was the president of Korea 

Institute of Information Security and Cryptology in 2006. He is currently a 

Professor of computer science at Yonsei University, Seoul, Republic of 

Korea. His research interests include cryptography and network security. 

 

 

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

491

From 1988 to 1989, he was an assistant professor at the 


