

Abstract—Web Servers are core components within the

networking industry and as such, the need for security for

these critical elements is tremendous. Thus, a Web Application

Firewall is deployed to protect the web server against possible

vectors of attack. The Web Application Firewall is focused on

the 7th layer; The Application layer of the OSI Model. Access

Controls are implemented by using Access Control Lists as its

rules to allow or reject traffic. The use of iptables userspace

application (A part of the Linux kernel) is used to queue the

packets at the kernel level and to direct the packets to go

through the WAF first before it enters into the web server.

The thorough inspection of the packets and the decision

making for packets are done in the kernel level. All accepted

packets are forwarded to the user level where the web server is

running. The Web Application Firewall is able to compare the

Access Control List, which is configured by the administrator

through any text editor, against the incoming HTTP packets

from the traffic before it reaches the web server itself. The

algorithm used to compare the payload of the packet is simply

pattern checking with the use of regular expressions. The

testing results are proof on how accurate the Web Application

Firewall is in detecting and rejecting different types of attacks

in accordance of the top 10 web application attacks from

OWASP.

Index Terms—Access control, firewalls, layer 7 information,

web server.

I. INTRODUCTION

Web servers are assets to the business and the Internet in

general because these machines are the source of

information and where information is stored. These web

servers deliver data such as web pages, images, videos and

other types of data available to the client when requested.[1],

[2] A Web server can to refer to a web server software or

the server hardware. Within the Internet infrastructure, web

servers are run in a constant state to serve requests from the

other networks (Internet). The Apache HTTP Server is one

example of a web server program and is one of the most

popular web server programs in use today. Its strengths lie

in the fact that it is an open source program maintained by a

community under the Apache Software Foundation, and it

caters to wide variety of operating systems such as Unix,

Linux, Microsoft Windows and Mac OS X.

Because of the important role a web server plays and

where it is situated in a logical diagram of a network; it is

subject to malicious attacks perpetuated by hostile parties

Manuscript received May 5, 2013; revised July 26, 2013.

Alexander Endraca, Bryan Genesis King, George Nodalo, and Maricone

Sta. Maria are with the College of Computer Studies, De La Salle

University- Manila (email: endraca.alex@gmail.com,

bryan_genesis_king@yahoo.com, george_nodalo@dlsu.ph,

maricone.stamaria@yahoo.com).

and/or entities. The usual goals of these attacks vary from

disrupting the function and availability of the web server to

gaining unauthorized access to hosted web content. To

prevent these attacks, there are network appliances that are

added to the computer network such as Intrusion Prevention

System (IPS) and Intrusion Detection System (IDS) [3], [4].

Both IPS and IDS help monitor the network but are only

limited to detecting and notifying administrators about the

abnormal network behavior and can still succumb to

complex attacks or attacks that may not have been

recognized by the system. IPS checks the signature of the

attacks and must rely on patterns to determine if there is an

attack.

As security risks arise, various, and ever-changing attacks

are carried out against the web server such as: Injection

attacks, Cross-Site Scripting (XSS), Insecure direct object

references to name a few. Injection attacks refer to injections

perpetuated through SQL, OS and LDAP. Through these

attacks, malicious data is sent to the website and executed by

the program. Cross-Site Scripting also known as XSS occurs

when untrusted data goes through invalidated fields [5].

Whilst with Insecure Direct Object References, files and

directories may be accessed by unauthorized people through

exposure of referenced objects. Different techniques and

practices are used to defend against these threats. To mitigate

injection attacks, white-listing and input validations are

implemented to prevent such attacks. For Cross-Site

Scripting (XSS), proper coding of SQL Queries and white-

listing is also used. For Insecure Direct Object Reference,

session management and check access are used [6].

Firewalls are the first line of defense for web servers and

by extension the rest of the network. Firewalls allow

connections to pass through by following rules managed by

network administrators. However, these rules are inadequate

as time passes because it is difficult to distinguish whether a

packet pattern is malicious or not, thus some legitimate

connections are blocked, and some illegitimate connections

are permitted. To better protect the network, the state-full

packet inspection (SPI) firewall was developed. A SPI

firewall checks the header and footer of a packet ensuring

that it belongs to a valid session, but it does not check the

data inside the packet. Which may still contain malicious

content [7]. Finally, a third generation of firewall known as

Application Firewalls was developed, which checks not only

the header and footer part of the packet but also the data

portion. Based upon on the content of the packet the firewall

now decides on whether to allow the packet or reject it and

controls what type of traffic can be passed to the application

layer of network service.

The web application firewall is a type of firewall that

Web Application Firewall (WAF)

Alexander Endraca, Bryan King,

George Nodalo, Maricone Sta. Maria, and Isaac Sabas

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

451DOI: 10.7763/IJEEEE.2013.V3.277

checks the data level of the packets to protect the

application layer of the OSI model. By checking the data

portion of the packets, more detailed information is revealed

which is referred to as the granularity of a packet [8]. For

example, inside the HTTP header there would be http

requests and inside http request would be user agents,

cookies and more. Now being able to see this information, a

more informed decision is now made in regards to the

security controls for specific packets passed to the

application. Existing appliances and open source solutions

are available such as the Barracuda Web Application

Firewall and the modSecurity open source web application

firewall. Each implementation makes use different

algorithms and policy models. The Barracuda Web

Application Firewall uses its Barracuda web filter

architecture to filter out legitimate traffic from malicious

traffic. By letting it passes on to a hierarchical mechanism

which would evaluate each packet [9]. The modSecurity

open source web application firewall makes use of different

security models to decide whether to allow or reject traffic:

Negative Model where all known bad requests are rejected,

Positive Model where all known requests that are valid are

allowed and everything else is rejected, and the Extrusion

Detection Model where outbound data is blocked, identified

and monitored [10].

The protection models used by existing web application

firewalls are pertaining to traffic control. The inclusion of

an access control on web application entities such as pages

and files provide additional security. Examples of access

control models are Role-based Access Control (RBAC) and

Mandatory Access Control (MAC) [11]. RBAC model

which is an access control technique where administrators

can specify privileges and roles to provide access. This

could be used to protect that web application from traffic

flood from illegitimate users. MAC on the other hand

provides control over file access. Access can be granted on

a particular file based on the particular permission set [12].

The Web Application Firewall is installed as a running

service in the web server or system it needs to protect,

particularly the application layer level. Its main purpose is

to check all incoming HTTP traffic, then accepts and drops

the incoming HTTP traffic according to the rules that was

set by the network administrator. The administrator through

a text editor configures the rule-sets of the Web Application

Firewall. A manual is provided for the syntax and format of

the rules. The structure of the rules has the keywords

“allow” or “reject” as its basis for the decision, followed by

the different options of HTTP request headers and the value

which the administrator wants to be checked in the payload.

II.

WEB APPLICATION

FIREWALL

ENGINE

The WAF Engine is the main component of the Web

Application Firewall. The Web Application Firewall is

installed in the same machine as the Web Server. The Web

Application Firewall is limited only to Apache HTTP Web

Server. The WAF Engine consists of two modules namely

the Packet Analyzer Module and the Configuration Module.

Fig. 1. System architecture.

A. Packet Analyzer Module

Fig. 2. Packet analyzer.

Fig. 2 illustrates how packets are queued in the kernel

level and where the packets are inspected. Iptables is a

userspace command to queue the packets in the kernel level

and to direct the packets to go through the Packet Analyzer

first. [13] The iptables is used by running the following

commands:

Fig. 3. Iptables commands.

These commands are written in a file shell script. This

shell script should run first before the other modules of WAF

so that all incoming packets do not go directly to the web

server. When the shell script has run, all incoming packets in

a particular port of a web server (e.g. 8080) are queued in the

kernel level. Each queued packet in the kernel level goes

through the Packet Analyzer Module where the inspection of

packet is done.

Packets that access the Apache HTTP Web Server are

sniffed by the Packet Analyzer for analysis of data. The data

of the packets that had been analyzed are used to decide to

allow or reject the packets. The information about the

rejected packets is logged in order to be used for analysis in

the future. The response of the Web Server is not monitored

since it is assumed that the Web Server that is protected is

safe.

B. Configuration Module

The Configuration Module applies the settings for the

iptables -t mangle -N PktEcho

iptables -t mangle -A PktEcho -j QUEUE

iptables -t mangle -A PREROUTING -p tcp --dport 8080

-j PktEcho PktEcho

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

452

Web Application Firewall and the Access Control List of

the Web Application Firewall. The settings and Access

Control List are configured via text files. There is a specific

syntax followed for both the settings and Access Control

List of the Web Application Firewall. The Configuration

Module checks both configuration files to see if there are

errors in the input and in the syntax. When no errors are

found in the configuration files, the Configuration Module

applies the setting and the Access Control List in the Web

Application Firewall.

III. RESULTS

A. Access Control List Configuration File

The Web Application Firewall works by reading the

Access Control List Configuration text file. The Access

Control List Configuration text file is already premade with

basic configurations and may be edited by the administrator

to satisfy the security needed by the Web Application. The

file is parsed and generated automatically into “ACL.rules”

file which is read by the next module to synchronize its

purpose to the firewall.

Fig. 4. Access control list grammar.

Fig. 4 above shows, how the syntax of the Access

Control List Configuration file are formed in order to be

parsed. The attributes that can be set as rule parameters in

the Allow or Reject Statement are listed also in the Access

Control List Grammar file. Some example of the attributes

are “method”, “form” for the <PayField> rule parameter.

For the <Choice> parameter, the attributes are “accept”,

“user-agent”. And for the <Value>, the attributes that are

set depends on the data the administrator wants to input.

The Access Control List Configuration file must follow the

Allow and Reject Statement word per word, otherwise the

file has a syntax error when parsed and cannot be used by

the Web Application Firewall since it is not updated.

Fig. 5. Sample.txt.

Fig. 5 above shows a sample of an Access Control List

Configuration file that is made by the administrator and is

parsed and undergone syntax error checking and outputs a

file seen below in Fig. 6. The options that are used in the

“ACL.txt” are based on the grammar file that is followed in

creating an Access Control List Configuration file. An

example would be the Request fields Option which can be

User-Agent, Via, Warning and any of the options that are

listed in the grammar file. In creating an Access List

Configuration file, the order of the Access Control must be

in higher to lower priority since the Web Application

Firewall reads the Access Control List Configuration file line

by line.

Fig. 6. ACL.rules.

Fig. 6 above shows the “ACL.rules” which is the result of

parsed ACL configuration text file using the grammar file as

basis for the syntax. The data that is first parsed in the

Access Control is the method that has the value “POST” or

“GET”. After determining whether the method is “POST” or

“GET”, the “Request Field” or “PayField” would be the next

to be determined. The parsing of the .txt file shows a new

format that the Web Application Firewall can recognize to

be used by for allowing or rejecting the packet.

B. Packet Parser

Fig. 7. Parsed packet.

Fig. 7 above shows an example of a parsed packet that is

checked by the Web Application Firewall whether it can

access the Web Server or be dropped by the Web

Application Firewall. The highlighted part in the figure is the

data of the payload section of the packet, showing that the

system is able to parse values and data in the application

level. The parsed packet contains data such as the header

values and the payload. Based on the access control list that

was made the web application firewall knows what packets

should be allowed or should not be allowed to access the

web server.

C. Data Comparison

The Web Application Firewall reads the Access Control

List first and lists everything that is allowed to access the

Web Server and the packets to be dropped. It then searches

the whole packet including the headers and the payload.

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

453

Fig. 8. Dropped packet.

Fig. 8 above shows the process on how the Web

Application Firewall compares data and decides whether to

allow or drop the packet. For example, the word “jdoe”

must be dropped because it was declared by the

administrator in the rules. When the Web Application

Firewall parses the packet and finds the word “jdoe”, then it

drops the packet.

Before dropping the packet, all the data parsed from the

packet are compared against the rules that have been made

by the administrator. The algorithm that is used in detecting

values is a regular expression pattern check algorithm. This

algorithm uses regular expression patterns that were

generalized carefully to match attack patterns or malicious

patterns that are common in the packet. [14]

 In the Data Comparator, the algorithm searches for the

value inside the packet, if the value matches any of the

patterns that was taken from the rules then necessary actions

are being made depending on the rules that were associated

with it.

TABLE I: RESULTS OF THE DECISION

ACL (Value) Decision Packet Data

(Value)

Result

 jdoe Reject Jdoe Dropped

jplane Allow Jplane Allowed

alexander Reject null Dropped

passwd1 Allow passwd1 Allowed

passwd2 Allow passwd2 Allowed

The table above shows the results wherein continuous

packets are checked whether they are accepted to access the

Web Application Firewall or not. In the ACL column, the

values of the data are listed and it is based on the Access

Control List Configuration text file. The values seen in the

ACL column are extracted from the Access Control List

Configuration text file, rules, which were created by the

administrator. For example (allow payload = “jdoe”), the

jdoe value will be extracted for comparison purposes. The

Web Application Firewall’s decision is listed on the

Decision column, which is also found in the Access Control

List Configuration file. The Web Application Firewall sets

the flag to 0 if the decision is reject and 1 if the decision is

allow. The Web Application Firewall compares the data of

the packet to the Access Control List Configuration file that

has been listed one by one to see if the packet contains data

similar to the data of the configuration file.

In Table I, the value “jplane” in the Access Control List

has the decision of Allow. If a certain packet that is

accessing the Web Server has data containing “jplane”. The

Web Application Firewall acts based on the flag that is set.

In the test that was conducted, the Web Application Firewall

allowed the packet containing the data “jplane” since the flag

is set to 1 because the decision is Allow.

TABLE II: RESULTS OF INJECTION ATTACKS

Attack Number of Attacks

Sent

Number of Attacks

Dropped

SQL Injection 50 46

XSS Injection 50 50

The table above shows the results of another test

conducted on the Web Application Firewall wherein

continuous attacks try to penetrate into the Web Server. In

the test, two injection attacks are used in testing the Web

Application Firewall, namely SQL injection and XSS

injection. Different examples of SQL and XSS injection

attacks are used in the test. One example used for SQL

injection attack is “SELECT name FROM users WHERE

name='" & name & "' AND '" & password & "' ' OR

(SELECT COUNT(*) FROM users)>10 AND ''='”. And for

XSS injection attack “><script>alert('CSS

Vulnerable')</script><b a=a”. 46 out of 50 HTTP requests

that contain SQL injection attacks and 50 out of 50 HTTP

requests that contain XSS injection attacks, were dropped by

the Web Application Firewall.

It is important that the Web Application Firewall is able to

block not only packet data but also different type of attacks.

SQL and XSS injection are used in testing the Web

Application Firewall because these two attacks are included

in the OWASP’s Top 10 Most Critical Web Application

Security Risk.

The Web Application Firewall strictly follows the

decisions that were made for different data. It does not also

allow the packet to Access the web server if the data it

contains is not in the Access Control List Configuration file.

Like in the Table I, the Access Control List has the

“alexander” data. But since no packet has the value

“alexander”, the flag for the decision is set to 0 and the

packet is dropped. In other case, if the administrator sets a

particular method to be allowed, for example, “Allow

method POST” is set as a low priority in the ACL, then all

POST requests that do not contain rejected payload value are

accepted.

IV. CONCLUSION

The current implementation of WAF specifically the

Packet Analyzer and the Access Control List grammar;

provides insight into the workings of firewalls and the

processes involved in their function. There are several areas

of the system that can be improved upon such as:

1) Integrating SSL protocol: Being able to integrate SSL

functionalities into the firewall will go a long way into

improving the security and, given the need in today's

environment, it is a priority improvement once the

system is stable.

2) Increasing the compatibility of the system: The WAF

currently runs only for any web server running within the

Linux Ubuntu environment. A worthy improvement

would be to extend it to other platforms.

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

454

ACKNOWLEDGMENT

First off all, the group would like to thank God for all the

blessings and wisdom that He has provided us as we go

through our thesis. Also, thank you for Sir Isaac Sabas in

helping us get through in tight situations and giving us

encouragement as our thesis adviser. To our friends and

families who gave their all to support us until this time and

in the future. We would not be able to do all of these things

without you.

REFERENCES

[1] A. Razzaq, A. Hur, S. Shahbaz, M. Masood, and R. Ahmad,

“Critical analysis on web application firewall solutions,” in Proc.

IEEE Eleventh International Symposium on Autonomous

Decentralized Systems, 2013, pp. 1-6.

[2] S. Lin, “From web server security to web components security,” in

Proc. IEEE 37th Annual 2003 International Carnahan Conference

on Security Technology, 2003, pp. 176-182.

[3]

[4]

[5] A. E. Nunan, E. Souto, E. M. dos Santos, and E. Feitosa, “Automatic

classification of cross-site scripting in web pages using document-

based and URL-based features,” in Proc. IEEE Symposium on

Computers and Communications, 2012, pp. 702-707.

[6] OWASP. (2010). Owasp top 10 - 2010: The ten most critical web

application security risks. [Online]. Available:

https://www.owasp.org/images/0/0f/OWASP_T10_-_2010_rc1.pdf

[7] A. Frederic, “Firewalls and Internet Secuirty,” The Second Hundred

Years, vol. 2, no. 2, 1999.

[8] SANS Institute. (2012). The OSI Model: An Overview. [Online].

Available:

http://www.sans.org/reading_room/whitepapers/standards/osi-model

- overview_543

[9] Baraccuda Networks. The Barracuda Web Application Firewall:

Best practices for planning and defending against attacks by

anonymous. [Online]. Available:

https://www.barracuda.com/docs/White_Papers/Barracuda_Web_Ap

plication_Firewall_WP_Defending_Against_Anonymous.pdf

[10] SANS Institute. (2011). Using web application firewall to detect and

block common web application attacks. [Online]. Available:

http://www.sans.org/reading_room/whitepapers/webservers/web-

application-firewall-detect-block-common-web-application-

attacks_33831

[11] Y. Fan, Y. Zhao, J. Liu, and Z. Han, “A mandatory access control

model with enhanced flexibility,” in Proc. International Conference

on Multimedia Information Networking and Security 2009, MINES

'09, vol. 1, 2009, pp.1120-124.

[12] W. Zhou and C. Meinel, “Team and task based rbac access control

model,” in Proc. Latin American Network Operations and

Management Symposium, 2007, pp. 84-94.

[13] J. Xi, “A design and implement of ips based on snort,” in Proc.

Computational Intelligence and Security (CIS), 2011, pp. 771-773.

[14] A. Heninger. (2004). Analyzing Unicode Text with Regular

Expressions. [Online]. Available: http://www.icu-

project.org/docs/papers/iuc26_regexp.pdf.

Alexander D. Endraca was born in Manila, Philippines

in 1992. He is currently an undergraduate of Computer

Science with specialization in network engineering of De

La Salle University, Manila, Philippines.

He has worked at SMART Telecommunications Inc. as

a Programmer during his internship.

Bryan Genesis W. King was born in Manila, Philippines.

He is currently an undergraduate of Computer Science

with specialization in network engineering of De La Salle

University, Manila, Philippines.

He has worked at DLoads Inc. as a Web Application

Programmer during his internship.

George S. Nodalo Jr. was born in San Pablo City,

Laguna, Philippines in 1990. He is currently an

undergraduate of Computer Science with specialization in

network engineering of De La Salle University, Manila,

Philippines.

Maricone A. Sta. Maria was born in City of San

Fernando, Philippines in 1992. She is currently an

undergraduate of Computer Science with specialization in

network engineering of De La Salle University, Manila,

Philippines.
She has worked as a programmer at Infor during her

internship

Issac H. Sabas is currently a graduate of De La Salle

University, Manila, Philippines, with a degree of

Computer Science specializing in Network Engineering.

He has worked at Perimeter E-Security USA (now

Silversky) as a security analyst in the security operations

center (SOC). Currently works at Internet Fraud

Watchdog Online (IFW Online) as chief investigator. He

currently focuses on network intrusion analysis and

malware analysis.

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

455

G. Young. (2011, October 7). HP TippingPoint Next-Generation

Intrusion Prevention System (NGIPS). [Online]. Available:

http://docs.media.bitpipe.com/io_10x/io_104864/item_535989/HPTi

ppingPointNGIPS.PDF

K. Scarfone and P. Mell. (Feburary 2007). Guide to Intrusion

Detection and Prevention Systems (IDPS). [Online]. Available:

http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf.

