

Abstract—In this paper, we present a management system

for distributed software development in cloud computing

environments, called DDMan. Cloud computing environments

provide more flexibility than conventional computing

environments. In particular, the platform as a service (PaaS) in

cloud computing environments provides benefits for users in a

variety of aspects, such as application design, development

testing, software deployment, team collaboration, web service

integration, database integration, and scalability. Although the

process of distributed software development evolves and

changes by a lot in the past decade, there are still some user

needs remaining unsatisfied. For managing distributed

software development in cloud computing systems, we present

the DDMan system, which extends the WebSD model of

distributed software development management. In DDMan,

the interactions among the roles in the software development

are precisely defined. In addition to the conventional

web-based interface, the DDMan system also supports the

interface for the Amazon cloud environment, which is an

approach to a fully automatic service of distributed software

development management in cloud computing environments.

Index Terms—Distributed software development, software

project management, cloud computing environments.

I. INTRODUCTION

Cloud computing is not only a technological term that

refers to data, processing, or experiences that live out there

somewhere in the cloud that we call as the Internet, but also

a silent revolution in the way how companies operate with

data and applications in the processes of inventing,

developing, deploying, scaling, updating, maintaining and

paying for resources that undergo the changes [1]-[3]. It

calls for the need of a new model of distributed software

development management, which is specially designed for

the use in cloud computing environments. This motivates us

to develop a new management system that implements a new

model of distributed software development for cloud

computing environments.

More precisely, the management system presented in this

paper is designed to meet the following goals:

1) To simplify the hierarchical architecture of

conventional distributed software development,

2) To make the management system more flexible and

suitable for outsourcing the development of parts in the

Manuscript received April 17, 2013; revised July 28, 2013. This work is

supported in part by the National Science Council under grand number NSC

100-2218-E-259-002- MY3.

Chung Yung and Shao-Zong Chen are with Department of Computer

Science and Information Engineering, National Dong Hwa University,

Hualien, Taiwan 97401, R.O.C. (e-mail: {yung,

m9721505}@mail.ndhu.edu.tw).

software system to fellow companies, and

3) To allow various roles involved in the distributed

software development, including project managers,

software programmers, and software testers, to cooperate

in the management system.

In the past decade, the globally distributed way of software

development is applied to more and more software projects [4].

30 challenges, 31 management best practices, 10 models, and

24 tools were collected from 54 works published between

1998 and 2009. The key finding is that the strong evidence

about the effect of using the best practices, models, and tools

in distributed software development projects is still scarce in

the literature [5]. The intent of distributed software

development is to fully use the resources, including

computing devices and human resources, to achieve flexibility,

quality and cost down. However, several challenges arise in

globally distributed software development at the same time,

such as formalization in communication, the management of

formal changes, planning for system integration, project

monitoring across distributed teams, standard development

tools, and integrated management tools [6].

There are various architectures for distributed software

development management proposed in the literature, majorly

from 1997 to 2010. According to [6], we may classified them

into five categories:

1) Communication based approach [4], [5],

2) Virtual roles based approach [7], [8],

3) Virtual roles and Communication based approach [9],

4) Knowledge management and compliance based approach

[10]-[12],

5) Virtual machines based approach [13], [14].

We design and build a management system for distributed

software development, called DDMan, which implements the

WebSD model proposed by Yung et al. [6]. In addition, we

make some improvement when developing the DDMan

system. First, in DDMan, we formalize the communication

architecture in the distributed software development, and thus,

DDMan supports the process of all the roles of project

members in the distributed software development; including

the project owners and/or managers, the software

programmers, the software testers, and the software

debuggers. Second, compared with traditional management

systems for software development, DDMan improves the

usage of resources, especially when DDMan is used in

combination with other services provided at the cloud

computing platforms. And, DDMan also provides a solution

to the common problems in conventional distributed software

development, such as the integration and timely process of the

programs developed in different distributed regions. Usually,

DDMan: A Management System for Distributed Software

Development in Cloud Computing Environments

Chung Yung and Shao-Zong Chen

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

446DOI: 10.7763/IJEEEE.2013.V3.276

Altogether, based on the report by da Silva [5], there are et al.

such features require redundant investment in the software

development and management systems in order for software

transformation across difference platforms. DDMan

eliminates such redundant investment by providing a

common management platform for distributed software

development.

II. THE WEBSD MODEL

In this section, we briefly introduce a model of distributed

software development management in cloud computing

environments, called WebSD [6], based on which the

DDMan system is implemented.

In WebSD, a project of distributed software development

is described as a well-designed set of modules, which serve

as the basic units of encapsulation. It is reported that

separating the code into modules has the benefit of

encouraging developers to design well-defined interfaces

and thereby to shape coupling and cohesion of the code [3].

The management operations of distributed software

development modeled in WebSD are listed in Fig. 1. We

briefly describe each operation as follows.

1.1. Assign_top: A project manager assigns the job of

programming a module to a group.

1.2. Acceptp: A group accepts the job of programming a

module.

1.3. Finishp: A group finishes the job of programming a

module.

1.4. Rejectp: A group rejects the job of programming a

module.

1.5. Withdrawp: A group withdraws the acceptance of

programming a module.

1.6. Reassignp: A project manager reassigns the job of

programming a module to a group.

2.1. Assign_tou: A project manager assigns the job of testing

a module to a group.

2.2. Acceptu: A group accepts the job of testing a module.

2.3. Finishu: A group finishes the job of testing a module.

2.4. Rejectu: A group rejects the job of testing a module.

2.5. Withdrawu: A group can withdraw the acceptance of

testing a module.

2.6. Reassignu: A project manager reassigns the job of

testing a module to a group.

2.7. Report_bugsu: A group reports bugs after testing a

module.

3.1. System_test: A project manager schedules the job of

integration testing involving a module.

3.2. Finishs: A project manager finishes the job of

integration testing a module.

3.3. Report_bugss: A project manager reports bugs after

integration testing a module.

4.1. Assign_tod: A project manager assigns the job of

debugging a module to a group.

4.2. Acceptd: A group accepts the job of debugging a

module.

Fig. 1. Basic management operations in distributed software development.

4.3. Rejectd: A group rejects the job of debugging a module.

4.4. Reassignd: A project manager reassigns the job of

debugging a module to a group.

4.5. Finishd: A group finishes the job of debugging a module.

In the WebSD model, the life-cycle of developing a module

is presented by the state transition diagram shown in Fig. 2. As

an example, the state of a module is initially A. After it is

assigned to a group for programming, the state goes to B.

Once the assigned group accepts the job of programming, the

state goes to C. When the group reports the finish of

programming, the state goes to D. Then, it is assigned for

testing and the state goes to E. Once the assigned group

accepts the job of testing, the state goes to F. When the group

reports the finish of testing and no bug is found, the state goes

to G. And then, the project manager schedules the integration

tests, and the state goes to H. If it passes the integration tests,

the state goes to L and the development of the module is

complete.

One of the advantages in the WebSD model is that the

status of each module in a project of distributed software

development is well-defined, and hence the project can be in

good management [6].

Definition (Status of a software project using distributed

development P)

Given a software project consisting of a module set M of k

modules, the status of the project P is defined as

P={pi | 1 ≤ i ≤ k} (1)

where each pi is a pair ⟨ mi, si⟩ , mi ∈ M = {m1, ..., mk}, and

si ∈ S = {A, B, C, D, E, F, G, H, I, J, K, L}. (2)

Fig. 2. The state transition diagram of the WebSD model.

PHASE OPERATION

P1 Programming 1.1 Assign_top

1.2 Acceptp

1.3 Finishp

1.4 Rejectp

1.5 Withdrawp

1.6 Reassignp

P2 Unit Testing 2.1. Assign_tou

2.2. Acceptu

2.3. Finishu

2.4. Rejectu

2.5. Withdrawu

2.6. Reassignu

2.7. Report_bugsu

P3 Integration Testing 3.1. System_test

3.2. Finishs

3.3. Report_bugss

P4 Debugging 4.1. Assign_tod

4.2. Acceptd

4.3. Rejectd

4.4. Reassignd

4.5. Finishd

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

447

This paper is organized as follows. The next section

briefly describes the WebSD model. In Section III, we

present the design of the DDMan system. An application of

DDMan to a practical industry case is included in Section IV.

And, at last is a brief conclusion.

With the definition of P, we may keep record of the

progress in distributed software development with a formal

manner.

III. THE DD SYSTEM

In this section, we present a project management system

of distributed software development, called DDMan, which

implements the WebSD model described in the previous

section. In addition to conventional web-based interface,

DDMan also includes a distribution for Amazon cloud

environment (http://aws.amazon.com), such that all

members involved in the project may enjoy the benefit of

cloud computing environments; that is, being able to report

and proceed their jobs whenever they have access to the

internet.

In this section, we introduce the DDMan system as

follows. We start with a brief description on the system

structure of DDMan. And then, we show the interface

design of the DDMan system.

A. System Structure of DDMan

The overall structure of the DDMan system is shown in

Fig. 3. The major components in the DDMan system

structure are described as follows.

1) User Interface: In our design, a few styles of user

interfaces for DDMan are supported for various

platforms. At the time of writing this paper, the

interfaces for World Wide Web, and Amazon Web

Service are already available.

2) Management Agent: DDMan includes a fully

automatic management agent that implements the

management operations defined in the WebSD model.

3) Manager Subsystem: The manager subsystem

manipulates the operations needed by the project

managers.

4) Programmer Subsystem: The programmer subsystem

manipulates the operations needed by the programmers.

5) Tester Subsystem: The tester subsystem manipulates

the operations needed by the software testers.

Fig. 3. System Structure Diagram of DDMan.

B. User-Interface Design of DDMan

In the DDMan system, the user interface is designed as an

individual module such that DDMan may be easily ported to

various platforms. At the time of writing this paper, the

DDMan user interface supports two platforms; namely, the

World Wide Web and the Amazon cloud environment.

Some snapshots of the DDMan system are shown in Fig.

4. In Fig. 4 (a), group g1 views the status of each module in

the project. In Fig. 4 (b), group g1 assigns the job of

programming a module to a programming group. In Fig. 4 (c),

group g2 reports the finish of programming a module. In Fig. 4

(d), group g4 accepts the job of testing a module.

IV. A CASE STUDY OF CONSMAN

We present the application of the DDMan system to a

practical project called ConsMan, which is a distributed

software development project for constructing an information

management system for an energy and power company in

Taiwan that our second author worked with. The ConsMan

project is executed between 2006 and 2007. Note that the case

study is applied after the project is closed, based on the

documentation kept during execution, with simplification and

adaption for the ease of presentation. Also note that in the

following description, we only include the record of top-level

activities.

TABLE I: A PRACTICAL CASE STUDY OF APPLYING DDMAN TO THE

CONSMAN PROJECT

Modul

e
m1 m2 m3

Day 0 A A A

 g1:Assign_top(1,2) g1:Assign_top(2,2)
g1:Assign_top(3,

3)

Day 1 B B B

 g2:Acceptp(1) g2:Rejectp(2) g3:Acceptp(1,2)

 Day 2 C A C

g1:Reassignp(2,3);

g3:Acceptp(2)
g3:Finishp(3)

Day 3 C C D

 g2:Finishp(1)
g3:Withdrawp(2);

g1:Reassignp(2,2)

Day 4 D B D

 g1:Assign_tou(1,4)
g2:Acceptp(2);

g2:Finishp(2)

g1:Assign_tou(3,

5)

Day 5 E D E

 g4:Acceptu(1) g1:Assign_tou(2,5)

Day 6 F E E

g4:Report_bugsu(1

)
g5:Acceptu(2) g5:Acceptu(3)

Day 7 I F F

 g1:Assign_tod(1,3) g5:Finishu(2)

Day 8 J G F

 g3:Acceptd(1) g5:Finishu(3)

Day 9 K G G

 g3:Finishd(1)

Day 10 D G G

 g1:Assign_tou(1,4)

Day 11 E G G

 g4:Acceptu(1)

Day 12 F G G

 g4:Finishu(1)

Day 13 G G G

 g1:System_test(1)

g1:System_test(2);

g1:Report_bugss(2

)

g1:System_test(

3)

Day 14 H I H

g1:Assign_tod(2,2)

;

g2:Acceptd(2)

Day 15 H K H

g2:Finishd(2);

g1:Assign_tou(2,5)

Day 16 H E H

g5:Acceptu(2);

g5:Finishu(2)

Day 17 H G H

 g1:Finishs(1)
g1:System_test(2);

g1:Finishs(2)
g1:Finishs(3)

Day 18 L L L

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

448

MAN

The ConsMan project, with three top-level modules, is

developed by a team consisting of five groups, including an

in-house group (g1: PCM), and two outsourcing groups of

agents and consultants (g2: ACT, and g3: ACC), and the

other two off-site testing groups (g4: PCN, and g5: PCS).

We briefly describe the progress in the project as follows.

1) g1 does Assign_top(m1, g2), Assign top(m2, g2), and

Assign_top(m3, g3).

2) g2 does Acceptp(m1) and Rejectp(m2), and g3 does

Acceptp(m3).

3) g1 does Reassignp(m2, g3), and g3 does Acceptp(m2) and

Finishp(m2).

4) g2 does Finishp(m1), g3 does Withdrawp(m2), and g1 does

Reassignp(m2, g2).

5) g1 does Assign_tou(m1, g4) and Assign_tou(m3, g5), g2

does Acceptp(m2) and Finishp(m2).

6) g4 does Acceptu(m1), and g1 does Assign_tou(m2, g5).

7) g4 does Report_bugsu(m1), and g5 does Acceptu(m2) and

Acceptu(m3).

8) g1 does Assign_tod(m1, g3), and g5 does Finishu(m2).

9) g3 does Acceptd (m1), and g5 does Finishu(m3).

10) g3 does Finishd(m1).

11) g1 does Assign_tou(m1, g4).

12) g4 does Acceptu(m1).

13) g4 does Finishu(m1).

14) g1 does System_test(m1), System_test(m2),

System_test(m3), and Report_bugss(m2).

15) g1 does Assign_tod(m2, g2), and g2 does Acceptd(m2).

16) g2 does Finishd(m2), and g1 does Assign_tou(m2, g5).

17) g5 does Acceptu(m2) and Finishu(m2).

18) g1 does System_test(m2), Finishs(m1), Finishs(m2), and

Finishs(m3).

The record of applying the DDMan system to manage the

progress in developing ConsMan is shown in Table I.

(a) Group g1 views the status of each module

(b) Group g1 assigns the job of programming a module

(c) Group g2 reports finish of programming a module

(d) Group g4 accepts the job of texting a module

Fig. 4. Snapshots of the DDMan system.

V. CONCLUSION

We present a management system for distributed software

development in cloud computing environments, called

DDMan, which implements the WebSD model [6]. We

describe the overall structure of the DDMan system, and we

show the user-interface design of the DDMan system. We also

include a practical case study of applying DDMan to manage

the ConsMan project.

Based on our experience, it is clear that there is need of

extending the DDMan system to include more precise

information of distributed software development so that the

project may be better managed. We note the following

directions of future work, most of which are currently under

development.

1) To explore and integrate more management operations to

provide precise views of distributed software

development management for project managers.

2) To extend DDMan and facilitate the management of

multiple projects concurrently developed by a common

global virtual team.

3) To construct a cloud service of distributed software

development management so that DDMan can be easily

accessed and integrated with the other services in the

cloud computing environments.

REFERENCES

[1] V. Matveev, “Platform as a service – new opportunities for software

development companies,” Master’s thesis, Department of Information

Technology, Lappeenranta University of Technology, Punkkerikatu 2 A

6, 53850 Lappeenranta, Finland, May 2010.

[2] Y. C. Zhou, X. P. Liu, X. N. Wang, L. Xue, X. X. Liang, and S. Liang,

“Business process centric platform-as-a-service model and technologies

for cloud enabled industry solutions,” in Proc. the Third IEEE

International Conference on Cloud Computing (CLOUD 2010), IEEE

Computer Society, July 2010, pp. 534–537.

[3] J. S. Rellermeyer, M. Duller, and G. Alonso, “Engineering the cloud

from software modules,” in Proc. the 2009 ICSE Workshop on Software

Engineering Challenges of Cloud Computing, IEEE Computer Society,

May 2009, pp. 32–37.

[4] A. Piri, “Challenges of globally distributed software development

analysis of problems related to social processes and group relations,” in

Proc. the IEEE International Conference on Global Software

Engineering (ICGSE) 2008, IEEE Computer Society, August 2008, pp.

264–268.

[5] F. Q. B. da Silva, C. Costa, A. C. C. Franca, and R. Prikladinicki,

“Challenges and solutions in distributed software development project

management: a systematic literature review,” in Proc. the 5th IEEE

International Conference on Global Software Engineering (ICGSE)

2010, IEEE Computer Society, August 2010, pp. 87–96.

[6] C. Yung, S.-Z. Chen, S.-C. Wu, J.-T. Hsieh, and K.-J. Peng, “A

web-based model of distributed software development management for

cloud computing environments,” GSTF Journal of Computing, vol. 2, no.

2, pp. 1–7, June 2012.

[7] H. Zhu, M. Zhou, and P. Seguin, “Supporting software development

with roles,” IEEE Transactions on Systems, Man and Cybernetics, Part

A: Systems and Humans, vol. 36, no. 6, pp. 1110–1123, November 2006.

[8] B. Xu, X. Yang, and A. Ma, “Role based cross-project collaboration in

multiple distributed software design projects,” in Proc. the 12th

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

449

International Conference on Computer Supported Cooperative Work

in Design (CSCWD 2008), April 2008, pp. 177–182.

[9] K. A. Johnston and K. Rosin, “Global virtual teams: How to manage

them,” in Proc. the 2011 International Conference on Computer and

Management (CAMAN), May 2011, pp. 1–4.

[10] I. S. Wiese and E. H. M. Huzita, “IMART: An interoperability model

for artifacts of distributed software development environments,” in

Proc. the 2006 International Conference on Global Software

Engineering (ICGSE), October 2006, pp. 255–256.

[11] M. Ali-Babar and I. Gorton, “A tool for managing software

architecture knowledge,” in Proc. the Second Workshop on Sharing

and Reusing Architecture Knowledge-Architecture, Rationale, and

Design Intent (SHARK/ADI 2007), May 2007, pp. 11–17.

[12] M. Ali-Babar, “A framework for supporting the software architecture

evaluation process in global software development,” in Proc. the

Fourth IEEE International Conference on Global Software

Engineering (ICGSE 2009), IEEE Computer Society, July 2009, pp.

93–102.

[13] G. Lawton, “Developing software online with platform-as-a-service

technology,” IEEE Computer, vol. 41, no. 6, pp. 13–15, June 2008.

[14] H. Sun, X. Wang, C. Zhou, Z. Huang, and X. Liu, “Early experience

of building a cloud platform for service oriented software

development,” in Proc. the 2010 IEEE International Conference on

Cluster Computing, Workshops and Posters. IEEE Computer Society,

September 2010, pp. 1–4.

Chung Yung received PhD degree in Computer Science

from New York University (USA) in 1999 and BSc degree

in Computer Science and Information Engineering from

National Chiao Tung University (Taiwan) in 1988. He has

been with the Department of Computer Science and

Information Engineering of National Dong Hwa University

(Taiwan) since 2000. He was a part-time senior consultant

and project manager within the intelligent digital content

industry between 2003 and 2007. He is currently leading Compiler

Technology and Application Laboratory in National Dong Hwa University.

His research interests include semantic methods of program analysis,

optimizations for cloud software systems, compiler supported software

engineering, and programming languages.

Shao-Zong Chen is currently with Taiwan Power

Company as a senior software engineer since 2002. He is

working part-time for his master degree in Computer

Science and Information Engineering at Compiler and

Technology Application Laboratory of National Dong Hwa

University, Taiwan. He received BSc degree in Computer

Science and Information Engineering from Tamkang

University, Taiwan in 1992. His research interests include

software project management, program analysis and distributed software

development in cloud computing environments.

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 6, December 2013

450

