

Abstract—In this paper, a new extended linear-time temporal

logic (LTL), called sequential paraconsistent LTL (SPLTL), is

introduced for formalizing inconsistency-tolerant reasoning

with hierarchical information. A theorem for embedding

SPLTL into LTL is proved, and SPLTL is shown to be

decidable. Some illustrative examples for verifying Students'

learning processes are presented using SPLTL.

Index Terms—Decidability, linear-time temporal logic,

paraconsistent logic, students’ learning processes.

I. INTRODUCTION

In this paper, a new extended linear-time temporal logic

(LTL) [1], called sequential paraconsistent LTL (SPLTL), is

introduced as a semantics with a paraconsistent negation

connective [2]-[4] and some sequence modal operators [5],

[6].

The logic SPLTL can appropriately represent both,

inconsistency-tolerant reasoning by the paraconsistent

negation connective, and hierarchical information by the

sequence modal operators. Some illustrative examples for

verifying Students' learning processes are presented using

SPLTL. Some theorems for embedding SPLTL into a

paraconsistent version PLTL of LTL and into LTL are proved.

By using these embedding theorems, SPLTL is shown to be

decidable.

A motivation of this paper is to formalize students'

learning processes in SPLTL. Formalizing students' learning

process in an appropriate logic is useful for implementing

verification algorithms in some learning support systems

such as intelligent tutoring and e-learning systems. A model

of students in such a system should be inconsistency-tolerant

since student's understanding is uncertain and vague in

general. Moreover, detailed information on students should

be well-structured with hierarchical information. In order to

represent such a student model, we need a paraconsistent

negation connective, which can suitably represent

inconsistency-tolerant reasoning, and some sequence modal

operators, which can suitably represent hierarchical

information.

From the point of view of logic, SPLTL is a combination

of LTL and Nelson's paraconsistent four-valued logic with

strong negation, N4. LTL is known to be one of the most

useful temporal logics for verifying and specifying

Manuscript received March 11, 2013; revised June 20, 2013.

Norihiro Kamide is with Faculty of Information Technology and

Business, Cyber University, Japan Cyber Educational Institute, Ltd.

Izumishibakouen Building 4F, 1-6-8 Shibakouen, Minato-ku, Tokyo

105-0011, Japan (e-mail: drnkamide08@kpd.biglobe.ne.jp).

concurrent systems [1], [7]. On the other hand, N4 is known

to be one of the most important base logics for

inconsistency-tolerant reasoning [2], [4], [8], [9]. Combining

the logics LTL and N4 was studied in [8], and such a

combined logic was called paraconsistent LTL (PLTL).

Roughly speaking, SPLTL is obtained from PLTL by adding

some sequence modal operators.

Combining LTL with some sequence modal operators was

studied in [5], and such a combined logic was called

sequence-indexed LTL (SLTL). SPLTL is regarded as a

modified paraconsistent extension of SLTL, and hence

SPLTL is a modified extension of both PLTL [3] and SLTL

[5]. In the following, we explain an important property of

paraconsistent negation and a plausible interpretation of

sequence modal operators.

A paraconsistent negation connective is used in SPLTL.

One reason why is considered is that it may be added in

such a way that the extended logics satisfy the property of

paraconsistency. A semantic consequence relation is

called paraconsistent with respect to a negation connective

if there are formulas , such that { , } . In the case

of LTL, this means that there is a model M and a position i of

a sequence = t0, t1, t2, ... of time-points in M with (M, i)

 . It is known that logical systems with

paraconsistency can deal with inconsistency-tolerant and

uncertainty reasoning more appropriately than systems which

are non-paraconsistent. For example, we do not desire that

(s(x) s(x)) d(x) is satisfied for any symptom s and

disease d where s(x) means “person x does not have

symptom s”and d(x) means “person x suffers from disease d'',

because there may be situations that support the truth of both

s(a) and s(a) for some individual a but do not support the

truth of d(a). For more information on paraconsistency, see

e.g., [10].
Some sequence modal operators [5], [6] are used in SPLTL.

A sequence modal operator [b] represents a sequence b of

symbols. The notion of sequences is useful to represent the

notions of “information,” “trees,” “orders,” and “ontologies.”

Thus, “hierarchical information” can be represented by

sequences. This is plausible because a sequence structure

gives a monoid (M, ;, with informational interpretation

[9]:

1) M is a set of pieces of (ordered or prioritized)

information (i.e., a set of sequences),

2) ; is a binary operator (on M) that combines two pieces of

information (i.e., a concatenation operator on

sequences),

3) is the empty piece of information (i.e., the empty

sequence).

An Extended LTL for Inconsistency-Tolerant Reasoning

with Hierarchical Information: Verifying Students'

Learning Processes

Norihiro Kamide

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 3, June 2013

234DOI: 10.7763/IJEEEE.2013.V3.230

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 3, June 2013

235

A formula of the form [b1 ; b2 ; … ; bn] in SPLTL

intuitively means that “ is true based on a sequence b1 ; b2 ;

… ; bn of (ordered or prioritized) information pieces.”Further,

a formula of the form [] in SPLTL, which coincides with ,

intuitively means that “ is true without any information (i.e.,

it is an eternal truth in the sense of classical logic).”

The structure of this paper is then addressed as follows. In

Section II, SPLTL is introduced as a semantics by extending

LTL with a paraconsistent negation connective and some

sequence modal operators. In Section III, a verification

example for students' learning processes is presented using

SPLTL. In Section IV, the decidability of SPLTL is shown

using a theorem for embedding SPLTL into PLTL. Firstly in

this section, LTL and PLTL are introduced, and then the

embedding theorems for SPLTL into PLTL and into LTL are

proved. In Section V, this paper is concluded.

II. SEQUENTIAL PARACONSISTENT LTL

Formulas of SPLTL are constructed from countably many

propositional variables, (implication), (conjunction),

(disjunction), ¬ (classical negation), X (next), G (globally),

F (eventually), ~ (paraconsistent negation) and [b] (sequence

modal operator) where b is a sequence. Sequences are

constructed from countably many atomic sequences,
(empty sequence) and ; (composition). Lower-case letters b,

c, ... are used for sequences, lower-case letters p, q, ... are

used to denote propositional variables, and Greek lower-case

letters , , ... are used to denote formulas. An expression []

means , and expressions [; b] and [b ;] mean [b] .

The symbol is used to represent the set of natural numbers.

Lower-case letters i, j and k are used to denote any natural

numbers. The symbol or is used to represent the linear

order on . We write A B to indicate the syntactical

identity between A and B.

Definition 2.1: Formulas and sequences are defined by the

following grammar, assuming p and e represent propositional

variables and atomic sequences, respectively:

 ::= p | | | | ¬ | ~ | X G

b ::= e | | b ; b

The set of sequences (including) is denoted as SE. An

expression [d] is used to represent [d0][d1]…[di] with i
and d0 . Note that [d] can be the empty sequence. Also, an

expression d is used to represent d0 ; d1 ; … ; di with i .

The formulation of SPLTL uses two kinds of satisfaction

relations + d and - d. The intuitive interpretations of + d

and - d are “verification with sequential information”(or

“support of truth with sequential information'') and

“refutation with sequential information”(or “falsification

with sequential information'', “support of falsity with

sequential information''), respectively.

Definition 2.2 (SPLTL): Let S be a non-empty set of states.

A structure M := (, I+d, I-d) with d SE is a sequential

paraconsistent model iff

1. is an infinite sequence s0, s1, s2, ... of states in S,

2. I+d and I-d are mappings from the set of propositional

variables to the power set of S.

Satisfaction relations (M, i) *d (* {+, -}, d SE) for

any formula , where M is a sequential paraconsistent model

(, I+d, I-d) with d SE and i () represents some position

within , are defined by

1. for any p , (M, i) +d p iff si I+d (p),

2. (M, i) +d iff (M, i) +d and (M, i) +d ,

3. (M, i) +d iff (M, i) +d or (M, i) +d ,

4. (M, i) +d iff (M, i) +d implies (M, i) +d ,

5. (M, i) +d iff (M, i) +d ,

6. (M, i) +d iff (M, i) -d ,

7. (M, i) +d iff (M, i+1) +d ,

8. (M, i) +d iff j i [(M, j) +d],

9. (M, i) +d iff j i [(M, j) +d],

10. for any p , (M, i) -d p iff si I-d (p),

11. (M, i) -d iff (M, i) -d or (M, i) -d ,

12. (M, i) -d iff (M, i) -d and (M, i) -d ,

13. (M, i) -d iff (M, i) +d and (M, i) -d ,

14. (M, i) -d iff (M, i) -d ,

15. (M, i) -d iff (M, i) +d ,

16. (M, i) -d iff (M, i+1) -d ,

17. (M, i) -d iff j i [(M, j) -d],

18. (M, i) -d iff j i [(M, j) -d],

19. for any atomic sequence e and any * {+, -},

(M, i) *d iff (M, i) *d;e ,

20. (M, i) *d iff (M, i) *d .

A formula is valid (satisfiable) in SPLTL iff (M, 0)

 +
 for any (some, resp.) sequential paraconsistent model

M := (, I+d, I-d) with d SE.

Proposition 2.3: The following clauses hold for any

formula , any sequences c, d, and any * {+, -},

1). (M, i) ⊨*d iff (M, i) ⊨*d;c ,

2.) (M, i) ⊨*
 [d] iff (M, i) ⊨*d .

Proof: Since (2) is derived from (1), we show only (1)

below. (1) is proved by induction on c.

Case c : Obvious.

Case c e for an atomic sequence e: By the definition of ⊨
*d .

Case c a ; b: (M, i) ⊨*d [a ; b] iff (M, i) ⊨*d [a][b] iff (M,

i) ⊨*d ; a [b] (by induction hypothesis) iff

(M, i) ⊨*d ; a ; b (by induction hypothesis).

An expression means . The

following formulas are valid in SPLTL: For any formulas ,

 and any b, c SE,

1. ,

2. () ,

3. () ,

4. () ,

5. ,

6. X X ,

7. F G ,

8. G F ,

9. [b]() ([b]) # ([b]) where # { , , },

10. [b]# #[b] where # { , , X, G, F},

11. [b ; c] [b][c] .

The falsification conditions for may be felt to be in need

of some justification. Suppose that a is a person who is

neither rich nor poor and that, as a matter of fact, no one is

both rich and poor. Let p stand for the claim that a is poor and

r for the claim that a is rich. Intuitively, a state definitely

verifies p iff it falsifies r, and vice versa. Suppose now that
p is indeed falsified at a state i in model M: (M, i) -d p.

This should mean that it is verified at i that p is poor or neither

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 3, June 2013

236

poor or rich. But this is the case iff r is not verified at i, which

means that p is not falsified at i.

SPLTL can be regarded as a four-valued logic. The reason

is presented as follows. For any i , any d SE and any

formula , we can take one of the following four cases:

1. is verified at i, i.e., (M, i) +d ,

2. is falsified at i, i.e., (M, i) -d ,

3. is both verified and falsified at i,

4. is neither verified nor falsified at i.

SPLTL is paraconsistent with respect to . The reason is

presented as follows. Assume a sequential paraconsistent

model M := (, I+d, I-d) with d SE such that si I+d(p), si
I-d(p) and not-[si I+d(q)] for a pair of distinct propositional

variables p and q. Then, (M, i) ⊨+d (p p) q does not hold.

III. VERIFYING STUDENTS' LEARNING PROCESSES

A model of students should be inconsistency-tolerant since

student's understanding is uncertain and vague in general.

SPLTL can be used to express the negation of uncertain

concepts such as understand (or understanding). For instance,

if we cannot determine whether someone understands, the

uncertain concept understand can be represented by asserting

the inconsistent formula:

understand understand.

This is well formalized because the formula:

(understand understand)
is not valid in paraconsistent logic. On the other hand, we can

decide whether someone is learning: The decision is

represented by ~learning, where

(learning learning)
is valid in classical logic.

It is remarked that the following negative expressions can

be differently interpreted:

 understand (not understand),

 understand (not deeply understand).

The first statement indicates that a person is not understand

that is inconsistent with his or her understanding. The second

statement means that we can say that a person is not deeply

understand, but he or she may be shallowly understand. We

thus allow the situation: understand understand.

In ontology representation, a concept hierarchy is

constructed by ISA-relations between concepts, i.e., a

concept is a subconcept of another concept. In this study, we

use sequence modal operators to represent ISA-relations

between concepts. Let c1, c2, … ,cn be concept symbols. Then,

we write a sequence of concept names by [c1; c2; … ; cn].

Each order (ci, cj) (1 i < j n) of concepts in the sequence

modal operator [c1; c2;… ; cn] can be used to represent the

ISA-relation between ci and cj. For example, we declare the

following order of two concepts as an ISA-relation between

“human”and “student:”

[student ; human].

This sequence expresses that the concept “student”is a

subconcept of the concept “human.''

The sequence modal operators in SPLTL are applied to

hierarchical structures where each hierarchical structure is a

specific model of concepts in a hierarchy. Figure 1 shows a

hierarchical structure of students' learning process in a high

school. A typical student in a high school graduates three

years from the entry. In Fig. 1, ustd (an abbreviation of

 understand) represents uncertain negative information that

can be at the same time as ustd (an abbreviation of

understand), which represents positive information.

Fig. 1. Students’ learning process.

We can show a sequential paraconsistent model M = (, I+d,

I-d) with d SE that corresponds to a model of students'

learning processes as shown in Figure 1. For any * {+, -},

1. S = {s0, s1, s2, s3, s4, s5, s6, s7},

2. 1 = s0 s1 s2 s3 s7 s7 s7 …,

3. 2 = s0 s4 s5 s6 s7 s7 s7 …,

4. I*human(enter) = {s0 }, I*human(graduate) = {s7 },

5. I*human(1st) = I*student(1st) = {s1, s4},

6. I*human(2nd) = I*student(2nd) = {s2, s5},

7. I*human(3rd) = I*student(3rd) = {s3, s6},

8. I*human(learning) = I*student(learning) = {s1, s2, s3, s4, s5, s6},

9. I+human(ustd) = {s2, s3, s5, s6}, I-human(ustd) = {s1, s4, s5},

10. I*student(enter) = I*student(graduate) = ,

11. I*John(enter) = I*John(graduate) = ,

12. I*John(1st) = {s1}, I*John(2nd) = {s2}, I*John(3rd) = {s3},

13. I+John(ustd) = {s2, s3}, I-John(ustd) = {s1},

14. I*Maria(enter) = I*Maria(graduate) = ,

15. I*Maria(1st) = {s4}, I*Maria(2nd) = {s5}, I*Maria(3rd) = {s6},

16. I+Maria(ustd) = {s5, s6}, I-Maria(ustd) = {s4, s5}.

We can verify: “Is there a student who is difficult to

understand the lectures in the first year?” This statement is

expressed as:

[student ; human]F(learning understand 1st).

The above statement is true because we have a path s0 s1

with s1 I- John(understand), s1 I*John(learning) and s1
I*John(1st) with * {+, -}. Namely, the lectures in the first

year are difficult for John.

We can also verify: “Is there a student who is confusing to

understand lectures?” This statement is expressed as:

[student ; human]F(learning ~understand understand).

The above statement is true because we have a path s0
s4 s5 with s5 L*Maria(learning), s5 I+Maria(understand) and

s5 I-Maria(understand). Namely, To understand some

lectures in the 2nd year is confusing for Maria.

IV. EMBEDDING AND DECIDABILITY

In the following, the logics LTL and PLTL are introduced.

The language of LTL is obtained from that of SPLTL by

deleting [b] and , and the language of PLTL is obtained

from that of LTL by adding . A theorem for embedding

PLTL into LTL is presented. The decidability of PLTL is

derived from this theorem. These embedding and decidability

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 3, June 2013

237

results were originally proved in [3], and these results will be

used to show the embedding and decidability results of

SPLTL.

Definition 4.1 (LTL): Let S be a non-empty set of states. A

structure M := (, I) is a model iff

1. is an infinite sequence s0, s1, s2, ... of states in S,

2. I is a mapping from the set of propositional variables to

the power set of S.

A satisfaction relation (M, i) for any formula ,

where M is a model (, I) and i () represents some

position within , is defined by

1. for any p , (M, i) p iff si I(p),

2. (M, i) iff (M, i) and (M, i) ,

3. (M, i) iff (M, i) or (M, i) ,

4. (M, i) iff (M, i) implies (M, i) ,

5. (M, i) iff (M, i) ,

6. (M, i) iff (M, i+1) ,

7. (M, i) iff j i [(M, j)],

8. (M, i) iff j i [(M, j)].

A formula is valid (satisfiable) in LTL iff (M, 0) for

any (some, reps.) model M := (, I).

Definition 4.2 (PLTL): Let S be a non-empty set of states.

A structure M := (, I+, I-) is a paraconsistent model iff

1. is an infinite sequence s0, s1, s2, ... of states in S,

2. I+ and I- are mappings from the set of propositional

variables to the power set of S.

Satisfaction relations (M, i) + and (M, i) - for any

formula , where M is a paraconsistent model (, I+, I-) and i

() represents some position within , are defined by

1. for any p , (M, i) + p iff si I+(p),

2. (M, i) + iff (M, i) + and (M, i) + ,

3. (M, i) + iff (M, i) + or (M, i) + ,

4. (M, i) + iff (M, i) + implies (M, i) + ,

5. (M, i) + iff (M, i) + ,

6. (M, i) + iff (M, i) - ,

7. (M, i) + iff (M, i+1) + ,

8. (M, i) + iff j i [(M, j) +],

9. (M, i) + iff j i [(M, j) +],

10. for any p , (M, i) - p iff si I- (p),

11. (M, i) - iff (M, i) - or (M, i) - ,

12. (M, i) - iff (M, i) - and (M, i) - ,

13. (M, i) - iff (M, i) + and (M, i) - ,

14. (M, i) - iff (M, i) - ,

15. (M, i) - iff (M, i) + ,

16. (M, i) - iff (M, i+1) - ,

17. (M, i) - iff j i [(M, j) -],

18. (M, i) - iff j i [(M, j) -].

A formula is valid (satisfiable) in PLTL iff (M, 0)

 + for any (some, reps.) paraconsistent model M := (, I+,

I-).

Next, we define a translation function g from PLTL into

LTL.

Definition 4.3: Let be a non-empty set of propositional

variables and be the set {p' | p } of propositional

variables. The language Lp (the set of formulas) of PLTL is

defined using , , , , , , F, G and X. The language L

of LTL is obtained from Lp by adding and deleting .

A mapping g from Lp to L is defined by

1. for any p , g(p) := p and g(p) := p' ,
2. g() := g() # g() where # { , , },

3. g(#) := #g() where # { , X, F, G},

4. g() := g(),

5. g(#) := #g() where # { , X},

6. g(()) := g() g(),

7. g(()) := g() g(),

8. g(()) := g() g(),

9. g(F) := G g(),

10. g(G) := F g().

We can obtain the following theorems.

Theorem 4.4 (Embedding from PLTL into LTL): Let g be

the mapping defined in Definition 4.3. For any formula ,

 is valid in PLTL iff g() is valid in LTL.

Proof: See [3].

By using this theorem, we can show the following

theorem.

Theorem 4.5 (Decidability of PLTL): PLTL is decidable.

Proof: See [3].

Next, we define a translation function f from SPLTL into

PLTL.

Definition 4.6: Let be a non-empty set of propositional

variables and d be the set {pd | p } (d SE) of

propositional variables where p := p. The language Lsp (the

set of formulas) of SPLTL is defined using , , , , , ,

F, G, X and [b] by the same way as in Definition 2.1. The

language Lp of PLTL is obtained from Lsp by adding d and

deleting [b].

A mapping f from Lsp to Lp is defined by:

1. for any p , f([d]p) := pd d, especially, f(p) = p,

2. f ([d] ()) := f ([d]) # f([d]) where # { , , },

3. f ([d]#) := # f([d]) where # { , , X, F, G},

4. f ([d][b ; c]) := f([d][b][c]).

Lemma 4.7: Let f be the mapping defined in Definition 4.6,

and S be a non-empty set of states. For any sequential

paraconsistent model M := (, I+d, I-d) with d SE of SPLTL,

any satisfaction relations *d (* {+, -}) on M, and any state

si , we can construct a paraconsistent model N := (, I+, I-)

of PLTL and satisfaction relations * on N such that for any

formula in Lsp,

(M, i) *d iff (N, i) * f([d]).

Proof: Let be a non-empty set of propositional variables

and d be the set {pd | p }. Suppose that M is a sequential

paraconsisitent model (, I+d, I-d) with d SE where

I*d (* {+, -}) are mappings from to

the power set of S.

Suppose that N is a paraconsisitent model (, I+, I-) where

I* (* {+, -}) are mappings from d d
to

the power set of S.

Suppose moreover that M and N satisfy the following

condition: For any si , any p and any * {+, -},

si I*d(p) iff si I*(pd).

Then, the lemma is proved by induction on the complexity

of .

Base step:

Case p :

We obtain: (M, i) *d iff si I*d(p) iff si I*(pd) iff (N, i)

 * pd iff (N, i) * f([d] p) (by the definition of f).

Induction step: We show some cases.

Case :

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 3, June 2013

238

For the case * +, we obtain: (M, i) +d iff (M,

i) +d and (M, i) +d iff (N, i) + f([d]) and (N, i) +

f([d]) (by induction hypothesis) iff (N, i) + f([d]) f([d])

iff (N, i) + f([d]) (by the definition of f).

For the case * -, we obtain: (M, i) -d iff (M, i) -d

 or (M, i) -d iff (N, i) - f([d]) or (N, i) - f([d]) (by

induction hypothesis) iff (N,i) - f([d]) f([d]) iff (N, i) -

f([d]()) (by the definition of f).

Case :

For the case * +, we obtain: (M, i) +d iff (M, i)

 +d implies (M, i) +d iff (N, i) + f([d]) implies (N, i)

 + f([d]) (by induction hypothesis) iff (N, i) + f([d])
f([d]) iff (N, i) + f([d]() (by the definition of f).

For the case * -, we obtain: (M, i) -d iff (M, i)

 +d and (M, i) -d iff (N, i) + f([d]) and (N, i) -

f([d]) (by induction hypothesis) iff (N, i) - f([d]) f([d])

iff (N, i) - f([d]()) (by the definition of f).

Case :

We obtain: (M,i) *d iff not-[(M,i) *d] iff not-[(N,i)

 * f([d])] (by induction hypothesis) iff (N, i) * f([d]) iff

(N,i) * f([d]) (by the definition of f).

Case :

For the case * +, we obtain: (M, i) +d iff (M, i) -d

 iff (N, i) - f([d]) (by induction hypothesis) iff (N, i) +

f([d]) iff (N, i) + f([d]) (by the definition of f).

For the case * -, we obtain: (M,i) -d iff (M, i) +d iff

(N, i) + f([d]) (by induction hypothesis) iff (N, i) -
f([d]) iff (N, i) - f([d]) (by the definition of f).

Case X :

We obtain: (M, i) *d X iff (M, i+1) *d iff (N, i+1) *

f([d]) (by induction hypothesis) iff (N, i) * X f([d]) iff (N,

i) * f([d]X) (by the definition of f).

Case :

For the case * +, we obtain: (M, i) +d G iff j i [(M,

j) +d] iff j i [(N, j) + f([d]] (by induction

hypothesis) iff (N, i) + G f([d]) iff (N, i) + f([d]G) (by

the definition of f).

For the case * -, we obtain: (M, i) -d G iff j i [(M,

j) -d] iff j i [(N, j) - f([d]] (by induction

hypothesis) iff (N, i) - G f([d]) iff (N, i) - f([d]G) (by the

definition of f).

Case :

We obtain: (M, i) *d [b] iff (M, i) *d ; b (by

Proposition 2.3) iff (N, i) * f([d ; b]) (by induction

hypothesis) iff (N, i) * f([d][b]) by the definition of f.

Lemma 4.8: Let f be the mapping defined in Definition 4.6,

and S be a non-empty set of states. For any paraconsisitent

model N := (, I+, I-) of PLTL, any satisfaction relations ⊨* (*

 {+, -}) on N, and any state si , we can construct a

sequential paraconsisitent model M := (, I+d, I-d) with d SE

of SPLTL and satisfaction relations ⊨*d (* {+, -}) on M

such that for any formula Lsp,

(N, i) * f([d]) iff (M, i) *d .

Proof: Similar to the proof of Lemma 4.7.

Theorem 4.9 (Embedding from SPLTL into PLTL): Let f be

the mapping defined in Definition 4.6. For any formula ,
is valid in SPLTL iff f() is valid in PLTL.

Proof: By Lemmas 4.7 and 4.8.

Theorem 4.10 (Embedding from SPLTL into LTL): Let f

and g be the mappings defined in Definitions 4.6 and 4.3,

respectively. For any formula , is valid in SPLTL iff g f

() is valid in LTL.

Proof: By Theorems 4.4 and 4.9.

Theorem 4.11 (Decidability of SPLTL): SPLTL is

decidable.

Proof: By decidability of PLTL, for each , it is possible to

decide if f() is valid in PLTL. Then, by Theorem 4.9,

SPLTL is decidable.

Theorem 4.11 shows that the validity problem of SPLTL is

decidable. Similarly, we can also show that both the

satisfiability and model checking problems of SPLTL are

decidable.

V. CONCLUSIONS

This paper introduced a new extended linear-time temporal

logic (LTL), called sequential paraconsistent LTL (SPLTL),

for formalizing inconsistency-tolerant reasoning with

hierarchical information. Some theorems for embedding

SPLTL into a paraconsistent subsystem PLTL of SPLTL and

into LTL were proved, and SPLTL was shown to be

decidable. The embedding and decidability results allow us to

use the existing LTL-based algorithms to test the

satisfiability. Thus it was shown in this paper that SPLTL can

be used as an executable logic to represent inconsistency-

tolerant reasoning with hierarchical information. It was also

shown that SPLTL is useful for formalizing and verifying

students' learning processes. In such a learning process,

students' understanding, which is an inconsistent and

uncertain concept, was presented using the paraconsistent

negation connective in SPLTL, and certain hierarchical

information on students were presented using the sequence

modal operators in SPLTL.

REFERENCES

[1] A. Pnueli, “The temporal logic of programs,” in Proc. the 18th IEEE

Symposium on Foundations of Computer Science, pp. 46-57, 1977.

[2] A. Almukdad and D. Nelson, “Constructible falsity and inexact

predicates,” Journal of Symbolic Logic 49, pp. 231-233, 1984.

[3] N. Kamide and H. Wansing, “A paraconsistent linear-time temporal

logic,”Fundamenta Informaticae, vol. 106, no. 1, pp. 1-23, 2011.

[4] D. Nelson, “Constructible falsity,”Journal of Symbolic Logic, vol. 14,

pp. 16-26, 1949.

[5] K. Kaneiwa and N. Kamide, “Sequence-indexed linear-time temporal

logic: Proof system and application,”Applied Artificial Intelligence,

vol. 24, no. 10, pp. 896-913, 2010.

[6] K. Kaneiwa and N. Kamide, “Conceptual modeling in full

computation-tree logic with sequence modal operator,”International

Journal of Intelligent Systems, vol. 26, no. 7, pp. 636-651, 2011.

[7] G. J. Holzmann, The SPIN model checker: Primer and reference

manual, Addison-Wesley, 2006.

[8] N. Kamide and H. Wansing, “Proof theory of Nelson's paraconsistent

logic: A uniform perspective,” Theoretical Computer Science, vol. 415,

pp. 1-38, 2012.

[9] H. Wansing, “The logic of information structures,” Lecture Notes in

Artificial Intelligence, vol. 681, pp. 1-163, 1993.

[10] G. Priest, “Paraconsistent logic,” in Handbook of Philosophical Logic

(Second Edition), vol. 6, D. Gabbay and F. Guenthner (eds.), Kluwer

Academic Publishers, Dordrecht, pp. 287-393, 2002.

Norihiro Kamide received his Ph.D. in Information Science from Japan

Advanced Institute of Science and Technology in 2000. His research

interests include Theoretical Computer Science, Logics in Computer Science

and in Artificial Intelligence, Mathematical Logic, and Philosophical Logic.

He is a member of Japanese Society for Artificial Intelligence, Japan Society

for Software Science and Technology, and Mathematical Society of Japan.

