
  

 

Abstract—In this paper, a new extended linear-time temporal 

logic (LTL), called sequential paraconsistent LTL (SPLTL), is 

introduced for formalizing inconsistency-tolerant reasoning 

with hierarchical information. A theorem for embedding 

SPLTL into LTL is proved, and SPLTL is shown to be 

decidable. Some illustrative examples for verifying Students' 

learning processes are presented using SPLTL.  

 
Index Terms—Decidability, linear-time temporal logic, 

paraconsistent logic, students’ learning processes.  

 

I. INTRODUCTION 

In this paper, a new extended linear-time temporal logic 

(LTL) [1], called sequential paraconsistent LTL (SPLTL), is 

introduced as a semantics with a paraconsistent negation 

connective [2]-[4] and some sequence modal operators [5], 

[6].  

The logic SPLTL can appropriately represent both, 

inconsistency-tolerant reasoning by the paraconsistent 

negation connective, and hierarchical information by the 

sequence modal operators. Some illustrative examples for 

verifying Students' learning processes are presented using 

SPLTL. Some theorems for embedding SPLTL into a 

paraconsistent version PLTL of LTL and into LTL are proved. 

By using these embedding theorems, SPLTL is shown to be 

decidable.  

A motivation of this paper is to formalize students' 

learning processes in SPLTL. Formalizing students' learning 

process in an appropriate logic is useful for implementing 

verification algorithms in some learning support systems 

such as intelligent tutoring and e-learning systems. A model 

of students in such a system should be inconsistency-tolerant 

since student's understanding is uncertain and vague in 

general. Moreover, detailed information on students should 

be well-structured with hierarchical information. In order to 

represent such a student model, we need a paraconsistent 

negation connective, which can suitably represent 

inconsistency-tolerant reasoning, and some sequence modal 

operators, which can suitably represent hierarchical 

information. 

From the point of view of logic, SPLTL is a combination 

of LTL and Nelson's paraconsistent four-valued logic with 

strong negation, N4. LTL is known to be one of the most 

useful temporal logics for verifying and specifying 
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concurrent systems [1], [7]. On the other hand, N4 is known 

to be one of the most important base logics for 

inconsistency-tolerant reasoning [2], [4], [8], [9]. Combining 

the logics LTL and N4 was studied in [8], and such a 

combined logic was called paraconsistent LTL (PLTL). 

Roughly speaking, SPLTL is obtained from PLTL by adding 

some sequence modal operators.   

Combining LTL with some sequence modal operators was 

studied in [5], and such a combined logic was called 

sequence-indexed LTL (SLTL). SPLTL is regarded as a 

modified paraconsistent extension of SLTL, and hence 

SPLTL is a modified extension of both PLTL [3] and SLTL 

[5]. In the following, we explain an important property of 

paraconsistent negation and a plausible interpretation of 

sequence modal operators.  

A paraconsistent negation connective   is used in SPLTL. 

One reason why   is considered is that it may be added in 

such a way that the extended logics satisfy the property of 

paraconsistency. A semantic consequence relation   is 

called paraconsistent with respect to a negation connective   

if there are formulas  ,  such that { ,   }    . In the case 

of LTL, this means that there is a model M and a position i of 

a sequence   = t0, t1, t2, ... of time-points in M with (M, i)   

        . It is known that logical systems with 

paraconsistency can deal with inconsistency-tolerant and 

uncertainty reasoning more appropriately than systems which 

are non-paraconsistent. For example, we do not desire that 

(s(x)  s(x))    d(x) is satisfied for any symptom s and 

disease d where  s(x) means “person x does not have 

symptom s”and d(x) means “person x suffers from disease d'', 

because there may be situations that support the truth of both 

s(a) and  s(a) for some individual a but do not support the 

truth of d(a). For more information on paraconsistency, see 

e.g., [10].  
Some sequence modal operators [5], [6] are used in SPLTL. 

A sequence modal operator [b] represents a sequence b of 

symbols. The notion of sequences is useful to represent the 

notions of “information,” “trees,” “orders,” and “ontologies.” 

Thus, “hierarchical information” can be represented by 

sequences. This is plausible because a sequence structure 

gives a monoid (M, ;,    with informational interpretation 

[9]: 

1) M is a set of pieces of (ordered or prioritized) 

information (i.e., a set of sequences), 

2) ; is a binary operator (on M) that combines two pieces of 

information (i.e., a concatenation operator on 

sequences), 

3)   is the empty piece of information (i.e., the empty 

sequence).  

An Extended LTL for Inconsistency-Tolerant Reasoning 

with Hierarchical Information: Verifying Students' 

Learning Processes 

Norihiro Kamide 

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 3, June 2013

234DOI: 10.7763/IJEEEE.2013.V3.230



  

 

  

    

    

  

 

 

 

 

      

   

   

    

 

        

  

  

  

     
  

 

  

 

 

 

   

  

 

       
       
        
         
      
      
     
      
      

       
        
        
       
      
      
     
      
      

 
      
      

    

 
      

      

  
      

    
      

 

     

  

  

  

  

 

 

 

 

  

 

 

 

  

 

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 3, No. 3, June 2013

235

A formula of the form [b1 ; b2 ; … ; bn]   in SPLTL 

intuitively means that “ is true based on a sequence b1 ; b2 ;

… ; bn of (ordered or prioritized) information pieces.”Further, 

a formula of the form [ ] in SPLTL, which coincides with  , 

intuitively means that “ is true without any information (i.e., 

it is an eternal truth in the sense of classical logic).”

The structure of this paper is then addressed as follows. In 

Section II, SPLTL is introduced as a semantics by extending 

LTL with a paraconsistent negation connective and some 

sequence modal operators. In Section III, a verification 

example for students' learning processes is presented using 

SPLTL. In Section IV, the decidability of SPLTL is shown 

using a theorem for embedding SPLTL into PLTL. Firstly in 

this section, LTL and PLTL are introduced, and then the 

embedding theorems for SPLTL into PLTL and into LTL are 

proved. In Section V, this paper is concluded.

II. SEQUENTIAL PARACONSISTENT LTL

Formulas of SPLTL are constructed from countably many 

propositional variables, (implication),  (conjunction),  

(disjunction), ¬ (classical negation), X (next), G (globally),

F (eventually), ~ (paraconsistent negation) and [b] (sequence 

modal operator) where b is a sequence. Sequences are 

constructed from countably many atomic sequences,  
(empty sequence) and ; (composition). Lower-case letters b, 

c, ... are used for sequences, lower-case letters p, q, ... are 

used to denote propositional variables, and Greek lower-case 

letters  ,  , ... are used to denote formulas. An expression [ ] 

means  , and expressions [ ; b] and [b ;  ] mean [b] . 

The symbol  is used to represent the set of natural numbers.

Lower-case letters i, j and k are used to denote any natural 

numbers. The symbol  or  is used to represent the linear 

order on  . We write A  B to indicate the syntactical 

identity between A and B.

Definition 2.1: Formulas and sequences are defined by the 

following grammar, assuming p and e represent propositional 

variables and atomic sequences, respectively: 

 ::= p |    |     |    | ¬  | ~  | X    G             

b ::= e |  | b ; b

The set of sequences (including  ) is denoted as SE. An 

expression [d] is used to represent [d0][d1]…[di] with i   
and d0   . Note that [d] can be the empty sequence. Also, an 

expression d is used to represent d0 ; d1 ; … ; di with i   . 

The formulation of SPLTL uses two kinds of satisfaction 

relations  + d and  - d. The intuitive interpretations of  + d

and  - d are “verification with sequential information”(or 

“support of truth with sequential information'') and 

“refutation with sequential information”(or “falsification 

with sequential information'', “support of falsity with 

sequential information''), respectively.

Definition 2.2 (SPLTL): Let S be a non-empty set of states. 

A structure M := ( , I+d, I-d) with d  SE is a sequential 

paraconsistent model iff

1.  is an infinite sequence s0, s1, s2, ... of states in S,

2. I+d and I-d are mappings from the set  of propositional 

variables to the power set of S. 

Satisfaction relations (M, i)  *d   (*  {+, -}, d  SE) for 

any formula  , where M is a sequential paraconsistent model 

( , I+d, I-d) with d  SE and i (  ) represents some position 

within  , are defined by

1. for any p   , (M, i)  +d p iff si  I+d (p),

2. (M, i)  +d    iff (M, i)  +d  and (M, i)  +d  ,

3. (M, i)  +d    iff (M, i)  +d  or (M, i)  +d  ,

4. (M, i)  +d    iff (M, i)  +d  implies (M, i)  +d  ,

5. (M, i)  +d   iff (M, i)  +d  ,

6. (M, i)  +d   iff (M, i)  -d  , 

7. (M, i)  +d   iff (M, i+1)  +d  ,

8. (M, i)  +d   iff  j  i [(M, j)  +d  ],

9. (M, i)  +d   iff  j  i [(M, j)  +d  ],

10. for any p   , (M, i)  -d  p iff si  I-d (p),

11. (M, i)  -d    iff (M, i)  -d  or (M, i)  -d  ,

12. (M, i)  -d    iff (M, i)  -d  and (M, i)  -d  ,

13. (M, i)  -d    iff (M, i)  +d  and (M, i)  -d  ,

14. (M, i)  -d   iff (M, i)  -d  ,

15. (M, i)  -d   iff (M, i)  +d  ,

16. (M, i)  -d   iff (M, i+1)  -d  ,

17. (M, i)  -d   iff  j  i [(M, j)  -d  ],

18. (M, i)  -d   iff  j  i [(M, j)  -d  ],

19. for any atomic sequence e and any *  {+, -},

(M, i)  *d     iff (M, i)  *d;e  , 

20. (M, i)  *d        iff (M, i)  *d        .

A formula  is valid (satisfiable) in SPLTL iff (M, 0)

 +
    for any (some, resp.) sequential paraconsistent model 

M := ( , I+d, I-d) with d  SE.

Proposition 2.3: The following clauses hold for any 

formula  , any sequences c, d, and any *  {+, -}, 

1). (M, i) ⊨*d     iff (M, i) ⊨*d;c  , 

2.) (M, i) ⊨*
 [d] iff (M, i) ⊨*d  . 

Proof: Since (2) is derived from (1), we show only (1) 

below. (1) is proved by induction on c.

Case c   : Obvious.

Case c  e for an atomic sequence e: By the definition of ⊨
*d . 

Case c  a ; b: (M, i) ⊨*d [a ; b] iff (M, i) ⊨*d [a][b] iff (M, 

i) ⊨*d ; a [b] (by induction hypothesis) iff 

(M, i) ⊨*d ; a ; b  (by induction hypothesis).            

An expression    means            . The 

following formulas are valid in SPLTL: For any formulas  , 

 and any b, c  SE,

1.      , 

2.  (   )      ,

3.  (   )      ,

4.  (   )     ,

5.        ,

6.  X  X  ,

7.  F  G  ,

8.  G  F  ,

9. [b](     )  ([b] ) # ([b] ) where #  { ,  ,  },

10. [b]#  #[b] where #  { ,  , X, G, F},

11. [b ; c]  [b][c] .

The falsification conditions for  may be felt to be in need 

of some justification. Suppose that a is a person who is 

neither rich nor poor and that, as a matter of fact, no one is 

both rich and poor. Let p stand for the claim that a is poor and 

r for the claim that a is rich. Intuitively, a state definitely 

verifies p iff it falsifies r, and vice versa. Suppose now that  
p is indeed falsified at a state i in model M: (M, i)  -d  p. 

This should mean that it is verified at i that p is poor or neither 
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poor or rich. But this is the case iff r is not verified at i, which 

means that p is not falsified at i.

SPLTL can be regarded as a four-valued logic. The reason 

is presented as follows. For any i   , any d  SE and any 

formula  , we can take one of the following four cases:

1.  is verified at i, i.e., (M, i)  +d  ,

2.  is falsified at i, i.e., (M, i)  -d  ,

3.  is both verified and falsified at i, 

4.  is neither verified nor falsified at i.

SPLTL is paraconsistent with respect to  . The reason is 

presented as follows. Assume a sequential paraconsistent 

model M := ( , I+d, I-d) with d  SE such that si  I+d(p), si  
I-d(p) and not-[si  I+d(q)] for a pair of distinct propositional 

variables p and q. Then, (M, i) ⊨+d (p  p)   q does not hold. 

III. VERIFYING STUDENTS' LEARNING PROCESSES

A model of students should be inconsistency-tolerant since 

student's understanding is uncertain and vague in general. 

SPLTL can be used to express the negation of uncertain 

concepts such as understand (or understanding). For instance, 

if we cannot determine whether someone understands, the 

uncertain concept understand can be represented by asserting 

the inconsistent formula:

understand   understand.

This is well formalized because the formula:

(understand   understand)   
is not valid in paraconsistent logic. On the other hand, we can 

decide whether someone is learning: The decision is 

represented by ~learning, where 

(learning   learning)   
is valid in classical logic.

It is remarked that the following negative expressions can 

be differently interpreted: 

      understand (not understand),

      understand (not deeply understand). 

The first statement indicates that a person is not understand

that is inconsistent with his or her understanding. The second 

statement means that we can say that a person is not deeply 

understand, but he or she may be shallowly understand. We 

thus allow the situation: understand   understand.

In ontology representation, a concept hierarchy is 

constructed by ISA-relations between concepts, i.e., a 

concept is a subconcept of another concept. In this study, we 

use sequence modal operators to represent ISA-relations 

between concepts. Let c1, c2, … ,cn be concept symbols. Then, 

we write a sequence of concept names by [c1; c2; … ; cn]. 

Each order (ci, cj) (1 i < j  n) of concepts in the sequence 

modal operator [c1; c2;… ; cn] can be used to represent the 

ISA-relation between ci and cj. For example, we declare the 

following order of two concepts as an ISA-relation between 

“human”and “student:” 

[student ; human]. 

This sequence expresses that the concept “student”is a 

subconcept of the concept “human.''

The sequence modal operators in SPLTL are applied to 

hierarchical structures where each hierarchical structure is a 

specific model of concepts in a hierarchy. Figure 1 shows a 

hierarchical structure of students' learning process in a high 

school. A typical student in a high school graduates three 

years from the entry. In Fig. 1,  ustd (an abbreviation of 

 understand) represents uncertain negative information that 

can be at the same time as ustd (an abbreviation of 

understand), which represents positive information.

Fig. 1. Students’ learning process.

We can show a sequential paraconsistent model M = ( , I+d, 

I-d) with d  SE that corresponds to a model of students' 

learning processes as shown in Figure 1. For any *  {+, -}, 

1. S = {s0, s1, s2, s3, s4, s5, s6, s7}, 

2.  1 = s0 s1 s2 s3 s7 s7 s7 …,

3.  2 = s0 s4 s5 s6 s7 s7 s7 …,

4. I*human(enter) = {s0 }, I*human(graduate) = {s7 }, 

5. I*human(1st) = I*student(1st) = {s1, s4}, 

6. I*human(2nd) = I*student(2nd) = {s2, s5}, 

7. I*human(3rd) = I*student(3rd) = {s3, s6}, 

8. I*human(learning) = I*student(learning) = {s1, s2, s3, s4, s5, s6}, 

9. I+human(ustd) = {s2, s3, s5, s6}, I-human(ustd) = {s1, s4, s5}, 

10. I*student(enter) = I*student(graduate) =  , 

11. I*John(enter) = I*John(graduate) =  , 

12. I*John(1st) = {s1}, I*John(2nd) = {s2}, I*John(3rd) = {s3},

13. I+John(ustd) = {s2, s3}, I-John(ustd) = {s1},

14. I*Maria(enter) = I*Maria(graduate) =  , 

15. I*Maria(1st) = {s4}, I*Maria(2nd) = {s5}, I*Maria(3rd) = {s6},

16. I+Maria(ustd) = {s5, s6}, I-Maria(ustd) = {s4, s5}. 

We can verify: “Is there a student who is difficult to 

understand the lectures in the first year?” This statement is 

expressed as: 

[student ; human]F(learning   understand  1st). 

The above statement is true because we have a path s0 s1

with s1  I- John(understand), s1  I*John(learning) and s1  
I*John(1st) with *  {+, -}. Namely, the lectures in the first 

year are difficult for John. 

We can also verify: “Is there a student who is confusing to 

understand lectures?” This statement is expressed as: 

[student ; human]F(learning  ~understand  understand).

The above statement is true because we have a path s0 
s4 s5 with s5  L*Maria(learning), s5   I+Maria(understand) and 

s5  I-Maria(understand). Namely, To understand some 

lectures in the 2nd year is confusing for Maria.

IV. EMBEDDING AND DECIDABILITY

In the following, the logics LTL and PLTL are introduced. 

The language of LTL is obtained from that of SPLTL by 

deleting [b] and  , and the language of PLTL is obtained 

from that of LTL by adding  . A theorem for embedding 

PLTL into LTL is presented. The decidability of PLTL is 

derived from this theorem. These embedding and decidability 
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results were originally proved in [3], and these results will be 

used to show the embedding and decidability results of 

SPLTL.

Definition 4.1 (LTL): Let S be a non-empty set of states. A 

structure M := ( , I) is a model iff 

1.  is an infinite sequence s0, s1, s2, ... of states in S,

2. I is a mapping from the set  of propositional variables to 

the power set of S.

A satisfaction relation (M, i)    for any formula  ,

where M is a model ( , I) and i (  ) represents some 

position within  , is defined by

1. for any p   , (M, i)  p iff si  I(p),

2. (M, i)      iff (M, i)   and (M, i)   ,

3. (M, i)      iff (M, i)    or (M, i)    ,

4. (M, i)      iff (M, i)    implies (M, i)    ,

5. (M, i)     iff (M, i)   ,

6. (M, i)     iff (M, i+1)    ,

7. (M, i)     iff  j  i [(M, j)    ],

8. (M, i)     iff  j  i [(M, j)    ]. 

A formula  is valid (satisfiable) in LTL iff (M, 0)    for 

any (some, reps.) model M := ( , I). 

Definition 4.2 (PLTL): Let S be a non-empty set of states.

A structure M := ( , I+, I-) is a paraconsistent model iff 

1.  is an infinite sequence s0, s1, s2, ... of states in S,

2. I+ and I- are mappings from the set  of propositional 

variables to the power set of S.

Satisfaction relations (M, i)  +  and (M, i)  -  for any 

formula  , where M is a paraconsistent model ( , I+, I-) and i 

(  ) represents some position within  , are defined by

1. for any p   , (M, i)  + p iff si  I+(p),

2. (M, i)  +    iff (M, i)  +  and (M, i)  +  ,

3. (M, i)  +    iff (M, i)  +  or (M, i)  +  ,

4. (M, i)  +    iff (M, i)  +  implies (M, i)  +  ,

5. (M, i)  +   iff (M, i)  +  ,

6. (M, i)  +   iff (M, i)  -  , 

7. (M, i)  +   iff (M, i+1)  +  ,

8. (M, i)  +   iff  j  i [(M, j)  +  ],

9. (M, i)  +   iff  j  i [(M, j)  +  ],

10. for any p   , (M, i)  - p iff si  I- (p),

11. (M, i)  -    iff (M, i)  -  or (M, i)  -  ,

12. (M, i)  -    iff (M, i)  -  and (M, i)  -  ,

13. (M, i)  -    iff (M, i)  +  and (M, i)  -  ,

14. (M, i)  -   iff (M, i)  -  ,

15. (M, i)  -   iff (M, i)  +  ,

16. (M, i)  -   iff (M, i+1)  -  ,

17. (M, i)  -   iff  j  i [(M, j)  -  ],

18. (M, i)  -   iff  j  i [(M, j)  -  ]. 

A formula  is valid (satisfiable) in PLTL iff (M, 0)

 +   for any (some, reps.) paraconsistent model M := ( , I+, 

I-).

Next, we define a translation function g from PLTL into 

LTL. 

Definition 4.3: Let  be a non-empty set of propositional 

variables and   be the set {p' | p   } of propositional 

variables. The language Lp (the set of formulas) of PLTL is

defined using  ,  ,  ,  ,  ,  , F, G and X. The language L

of LTL is obtained from Lp by adding   and deleting  .

A mapping g from Lp to L is defined by 

1. for any p   , g(p) := p and g( p) := p'    ,
2. g(     ) := g( ) # g( ) where #  { ,  ,  },

3. g(# ) := #g( ) where #  { , X, F, G},

4. g(   ) := g( ),

5. g( # ) := #g(  ) where #  { , X},

6. g( (   )) := g(  )  g(  ),

7. g( (   )) := g(  )  g(  ),

8. g( (   )) := g( )  g(  ),

9. g( F ) := G g(  ),

10. g( G ) := F g(  ). 

We can obtain the following theorems. 

Theorem 4.4 (Embedding from PLTL into LTL): Let g be 

the mapping defined in Definition 4.3. For any formula  ,

    is valid in PLTL iff g( ) is valid in LTL.

Proof: See [3].                                   

By using this theorem, we can show the following 

theorem. 

Theorem 4.5 (Decidability of PLTL): PLTL is decidable.

Proof: See [3].                                   

Next, we define a translation function f from SPLTL into 

PLTL. 

Definition 4.6: Let  be a non-empty set of propositional 

variables and  d be the set {pd | p   } (d  SE) of 

propositional variables where p := p. The language Lsp (the 

set of formulas) of SPLTL is defined using  ,  ,  ,  ,  ,  , 

F, G, X and [b] by the same way as in Definition 2.1. The 

language Lp of PLTL is obtained from Lsp by adding  d and 

deleting [b]. 

A mapping f from Lsp to Lp is defined by:

1. for any p   , f([d]p) := pd   d, especially, f(p) = p,

2. f ([d] (     )) := f ([d] ) # f([d] ) where #  { ,  ,  },

3. f ([d]# ) := # f([d] ) where #  { ,  , X, F, G}, 

4. f ([d][b ; c] ) := f([d][b][c] ). 

Lemma 4.7: Let f be the mapping defined in Definition 4.6,

and S be a non-empty set of states. For any sequential 

paraconsistent model M := ( , I+d, I-d) with d  SE of SPLTL, 

any satisfaction relations  *d (*  {+, -}) on M, and any state 

si   , we can construct a paraconsistent model N := ( , I+, I-) 

of PLTL and satisfaction relations  * on N such that for any 

formula  in Lsp, 

(M, i)  *d  iff (N, i)  * f([d] ). 

Proof: Let  be a non-empty set of propositional variables 

and  d be the set {pd | p   }. Suppose that M is a sequential 

paraconsisitent model ( , I+d, I-d) with d  SE where 

I*d (*  {+, -}) are mappings from  to 

the power set of S.

Suppose that N is a paraconsisitent model ( , I+, I-) where 

I* (*  {+, -}) are mappings from  d      d
to 

the power set of S.

Suppose moreover that M and N satisfy the following 

condition: For any si   , any p   and any *  {+, -},

si  I*d(p) iff  si  I*(pd). 

Then, the lemma is proved by induction on the complexity 

of  . 

Base step:

Case   p    :

We obtain: (M, i)  *d  iff si  I*d(p) iff si  I*(pd) iff (N, i) 

 * pd iff (N, i)  * f([d] p) (by the definition of f ).

Induction step: We show some cases.

Case      :
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For the case *  +, we obtain: (M, i)  +d    iff (M, 

i)  +d  and (M, i)  +d  iff (N, i)  + f([d] ) and (N, i)  +

f([d] ) (by induction hypothesis) iff (N, i)  + f([d] )  f([d] )

iff (N, i)  + f([d]   ) (by the definition of f ).

For the case *  -, we obtain: (M, i)  -d    iff (M, i)  -d

 or (M, i)  -d  iff (N, i)  - f([d] ) or (N, i)  - f([d] ) (by 

induction hypothesis) iff (N,i)  - f([d] )  f([d] ) iff (N, i)  -

f([d](    )) (by the definition of f ).

Case      : 

For the case *  +, we obtain: (M, i)  +d    iff (M, i) 

 +d  implies (M, i)  +d  iff (N, i)  + f([d] ) implies (N, i) 

 + f([d] ) (by induction hypothesis) iff (N, i)  + f([d] )  
f([d] ) iff (N, i)  + f([d](    ) (by the definition of f).

For the case *  -, we obtain: (M, i)  -d    iff (M, i)

 +d  and (M, i)  -d  iff (N, i)  + f([d] ) and (N, i)  -

f([d] ) (by induction hypothesis) iff (N, i)  - f([d] )  f([d] )

iff (N, i)  - f([d](    )) (by the definition of f).

Case     :

We obtain: (M,i)  *d   iff not-[(M,i)  *d  ] iff not-[(N,i)

 * f([d] )] (by induction hypothesis) iff (N, i)  *  f([d]  ) iff

(N,i)  * f([d]  ) (by the definition of f).

Case     :

For the case *  +, we obtain: (M, i)  +d   iff (M, i)  -d

  iff (N, i)  - f([d] ) (by induction hypothesis) iff (N, i)  + 

f([d] ) iff (N, i)  + f([d]  ) (by the definition of f ).

For the case *  -, we obtain: (M,i)  -d   iff (M, i)  +d  iff

(N, i)  + f([d] ) (by induction hypothesis) iff (N, i)  -  
f([d] ) iff (N, i)  - f([d]  ) (by the definition of f ).

Case   X :

We obtain: (M, i)  *d X iff (M, i+1)  *d  iff (N, i+1)  *

f([d] ) (by induction hypothesis) iff (N, i)  * X f([d] ) iff (N, 

i)  * f([d]X ) (by the definition of f ).

Case     : 

For the case *  +, we obtain: (M, i)  +d G iff  j  i [(M, 

j)  +d  ] iff  j  i [(N, j)  + f([d]   ] (by induction 

hypothesis) iff (N, i)  + G f([d] ) iff (N, i)  + f([d]G ) (by 

the definition of f ). 

For the case *  -, we obtain: (M, i)  -d G iff  j  i [(M, 

j)  -d  ] iff  j  i [(N, j)  - f([d]   ] (by induction 

hypothesis) iff (N, i)  - G f([d] ) iff (N, i)  - f([d]G ) (by the 

definition of f ).

Case       : 

We obtain: (M, i)  *d [b]  iff (M, i)  *d ; b  (by 

Proposition 2.3) iff (N, i)  * f([d ; b] ) (by induction 

hypothesis) iff (N, i)  * f([d ][b] ) by the definition of f.                 

Lemma 4.8: Let f be the mapping defined in Definition 4.6, 

and S be a non-empty set of states. For any paraconsisitent 

model N := ( , I+, I-) of PLTL, any satisfaction relations ⊨* (*

 {+, -}) on N, and any state si   , we can construct a 

sequential paraconsisitent model M := ( , I+d, I-d) with d  SE 

of SPLTL and satisfaction relations ⊨*d (*  {+, -}) on M

such that for any formula   Lsp,

(N, i)  * f([d] ) iff (M, i)  *d  .

Proof: Similar to the proof of Lemma 4.7.                       

Theorem 4.9 (Embedding from SPLTL into PLTL): Let f be 

the mapping defined in Definition 4.6. For any formula  ,  
is valid in SPLTL iff f( ) is valid in PLTL.

Proof: By Lemmas 4.7 and 4.8.                                          

Theorem 4.10 (Embedding from SPLTL into LTL): Let f 

and g be the mappings defined in Definitions 4.6 and 4.3,

respectively. For any formula  ,  is valid in SPLTL iff g f

( ) is valid in LTL.

Proof: By Theorems 4.4 and 4.9.                                     

Theorem 4.11 (Decidability of SPLTL): SPLTL is 

decidable.

Proof: By decidability of PLTL, for each  , it is possible to 

decide if f( ) is valid in PLTL. Then, by Theorem 4.9, 

SPLTL is decidable.                                                             

Theorem 4.11 shows that the validity problem of SPLTL is 

decidable. Similarly, we can also show that both the 

satisfiability and model checking problems of SPLTL are 

decidable.

V. CONCLUSIONS

This paper introduced a new extended linear-time temporal 

logic (LTL), called sequential paraconsistent LTL (SPLTL),

for formalizing inconsistency-tolerant reasoning with 

hierarchical information. Some theorems for embedding 

SPLTL into a paraconsistent subsystem PLTL of SPLTL and 

into LTL were proved, and SPLTL was shown to be 

decidable. The embedding and decidability results allow us to 

use the existing LTL-based algorithms to test the 

satisfiability. Thus it was shown in this paper that SPLTL can 

be used as an executable logic to represent inconsistency-

tolerant reasoning with hierarchical information. It was also 

shown that SPLTL is useful for formalizing and verifying 

students' learning processes. In such a learning process, 

students' understanding, which is an inconsistent and 

uncertain concept, was presented using the paraconsistent 

negation connective in SPLTL, and certain hierarchical 

information on students were presented using the sequence 

modal operators in SPLTL.
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