



Abstract—Public transport especially buses are getting

crowded day-by-day due to heavy demand of transport facility.

More over the frequency of the buses are unregulated. Either

the buses lines up at one time or buses get delayed for a long

time. This kind of chaos is mainly due to irregular Planning of

bus intervals and not knowing the details of the amount of

passengers expected at a time. Hence we are proposing a system

in which the number of passengers in a bus stop can be

calculated and the bus service can be regulated depending on

the passenger’s arrival. Cloud is the best platform to implement

this system as the storage is dynamic in cloud and interface can

be easily provided to people using Iaas. In this paper we mainly

concentrate on the scheme of the proposed system and resource

allocation in cloud using Gossip protocol.

Index Terms—Gossip protocol, GPS system, infrastructure

as a service, resource allocation, windows azure.

I. INTRODUCTION

The existing system of our public transit system has not

been properly scheduled which leads to overcrowding of

passengers in buses. This problem of crowding is mainly due

to the unplanned bus management system. Our present Bus

transport system does not accounts the total number of

passengers in the bus stop. This paper deals briefly about

calculating the total number of passengers in a stop and

regulate the bus service accordingly using dynamic resource

allocation in cloud. This can be implemented using Windows

Azure. Azure has capacity to handle data outburst. The

development fabric and development storage helps in

creating applications in cloud. Gossip protocol can also be

inculcated while coding the application.

II. EXISTING SYSTEM

There are many tracking system systems to monitor the

traffic flow like, taxi tracking in Melbourne, Brisbane and

Adelaide used to get the closest free taxi to a waiting

customer. Bus Tracking systems are already in use in Perth

and Adelaide, but they are used to help customers know when

bus is due to arrive.

The public transport management system [1] which is

currently used indicates the delay in bus timings during any

natural calamities, indicates when the bus load is full. This

system uses management and fusion software to monitor this

Manuscript received August 7, 2012; revised September 18, 2012.

Ranjith Ramesh, Yokesh Ezhilarasu, Prasanna Ravichandran, Soma

prathibha are pursuing his B.Tech Information Technology in Sri Sairam

Engineering College affiliated to Anna University, Chennai (email:

, prasanna.it92@gmail.com,

somaprathi25@gmail.com)

system. This method does not take in to account the number

of passengers boarding and departing in the initial stage and

hence regulating the transport becomes a difficult task.

The Transit Management System [2] is used in advanced

public transport system. They mainly focus on Fleet

Management, Traveler Information, Electronic Fare Payment,

and Transportation

Demand Management. The automatic vehicle

identification helps only in monitoring the vehicle and not the

passengers count.

The Transport Asset Management System [3] has the great

disadvantage of manual entry of the data which is prone to

high error in data entered.

Bus management system with Comprehensive CAD/AVL

Passenger information system[4] satisfies the major need of

intimating and monitoring the bus routes in an efficient way

but they mainly suffer from high cost and they fails in

performance when the population is more.

All the above disadvantages can be sorted out by the

system which uses cloud computing to monitor passenger

population and regulate the frequency of the buses.

III. PROPOSED SYSTEM

The proposed system has the following objectives

 To find the passenger population in bus stops using

message service and online bus pass.

 Regulate the bus frequency depending on the

passenger population

 Create software in cloud to calculate the passenger

population and regulate the buses by sending more

buses to highly populated stops and reducing the bus

flow to less populated stops by intimating the

transport authority.

 Allocating the resources properly in cloud by using

gossip protocol.

 Using GPS system with cloud to find the delay in

buses and indicate the passengers through their cell

phone

The following algorithm is followed to calculate the

passenger count in a stop.

 Bus pass holders register their source and destination

in online through the interface provided to them as

shown in Fig 1.

 Ad-hoc users are requested to send a message with the

source, destination and time frame prior to the time of

journey to the cloud software

 The software in the cloud evaluates the request and

intimates the passenger with the bus number

 If the passenger goes late to the stop or early to the

stop the passenger is requested to send a message to

Regulating Bus Management System Using Cloud

Platform

Ranjith Ramesh, Yokesh Ezhilarasu, Prasanna Ravichandran, and Soma Prathibha, Member, IACSIT

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

517DOI: 10.7763/IJEEEE.2012.V2.175

ranjith.8593@gmail.com,yokesh93@gmail.com

the cloud service. The software will intimate the next

possible bus timings.

 By this method the amount of passengers in the bus

stop can be calculated and the buses can be regulated

 By using GPS system the delay in buses can be

intimated to the passengers.

Fig. 1. Flow chart of working of proposed system

The following algorithm is incorporated to intimate the

passenger with the bus number and regulate the buses based

on population at a stop as shown in Fig. 2.

 The Software in the Cloud Middleware gets the data

of source, destination and time frame request from the

passengers and calculate the number of boarding and

departing passengers at each stop based on the data

present in the tables as shown in Table. I which is

updated automatically based on the request of Ad-Hoc

passengers and bus-pass holders during registration.

 Then, the system checks whether there is any empty

seats available in the bus based on the conductor

regulation at each stop.

 If the seats were empty, The regular schedule of buses

is followed.

 Else, the system instructs the addition of new bus to

the route to the Transport Department.

 The passengers are the intimated with the bus number

after validation of the seat availability in the bus

through a particular route.

TABLE I: SQL DATABASE OF IN AND OUT PASSENGERS AT EACH STOP

Bus Stop In Out

X 20 5

Y 10 25

Fig. 2. Function of software in cloud data centre

IV. GOSSIP PROTOCOL–DYNAMIC RESOURCE ALLOCATION

A gossip protocol has the structure of a round based

distributed algorithm [5]. When executing a round-based

gossip protocol, each node selects a subset of other nodes to

interact with based on distance between the nodes

dynamically. Nodes interact via „small‟ messages, which are

processed and trigger local state changes. Node interaction

with the Gossip protocol follows the push-pull paradigm,

whereby two nodes exchange state information (gossiping its

states information to other node) as shown in Fig .3.

Fig. 3. Gossiping of states between requesting nodes

In the proposed system, we split a big region (for eg.

Chennai) into tiny areas(like North Chennai) and each area

has a local host(node) which updates its state for each request

it handles from users. In the above diagram, each circle

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

518

depicts a node (local host) maintained for each area. The

hosts exchange information between themselves during each

request thus it reduces the over head on cloud data centre.

Compared to alternative distributed solutions, gossip-based

protocols tend to be simpler, more scalable and more robust.

This type of protocol runs on all machines of the cloud. More

precisely, it executes in the resource manager components of

the cloud middleware architecture. Initially, the resource

manager maintains a configuration matrix with the CPU and

Memory Demand. Every node connected to the cloud runs

the Gossip protocol to process simultaneous request and

adapt dynamically to different inputs. The cost of

reconfiguration is maintained low to increase the cloud utility.

At first, the node p executes its active thread .This thread

chooses a node q dynamically in a periodic time interval,

such that the cost of reconfiguration is low .Then, the node p

send its state sp to selected node and in turn the selected node

sends its state to the node p. There is also a passive thread

which is run during an incoming request. In which the node

receives the state of some other node sq and then it sends its

status sp to the node that is in communication if the request is

satisfied. Then after the threads completion, the relative

demand between two nodes is equalized by averaging their

local states.

After equalization of relative demands, the configuration

matrix is updated and thus both the requests of nodes are

processed simultaneously and successfully.

The below algorithm shows the execution of the active and

passive thread of a generic Gossip protocol given in [6] -

executed by node p:

V. IMPORTANCE OF GOSSIP PROTOCOL IN THE PROPOSED

SYSTEM

As the number of people who use the public transit system

[1] is very high, it is not preferable to go for ordinary

platform like database, networking, e-reservation etc.

Database becomes insignificant for a large number of users.

Networking and e-reservation fails on the fact that there is a

possibility of the server crash. Instead, we could go for Cloud

environment which allows dynamic resource management. In

this paper, we made use of Gossip protocol which ensures,

1) Resource allocation to all people simultaneously.

2) Adapting to the various requests from different users

simultaneously.

There may be a numerous number of users requesting for

the bus number with source and destination details. In such a

case, cloud middleware process the request of many users

simultaneously based on the demand of the available

resources and the information is updated to the data present in

the cloud data centers through the instance created for each

request. By this mechanism, we can intimate the user

immediately with the bus details without any delay even in

the situation of high traffic so that the passengers get boarded

and reach their destination on time. This protocol enables us

to allocate the resources to the user based on the demand. As

the user request changes dynamically, demand for the

resources in cloud also varies accordingly. So each time the

resources are allocated, the resource manager component of

the cloud middle ware maintains information of the CPU and

memory demand through a configuration matrix. Each time

the user request for information, it computes the new

configuration matrix for that node p. The instance is created

for processing the request and Gossip protocol executes the

active thread, which select a random node q from a set of

nodes that are in the local view of p dynamically

continuously after certain time stamp and sends its state sp.

Gossip protocol uses the passive thread to process the

incoming request from another node near-by.

After completion of threads, the relative demand is

equalized through averaging their local states or shifting the

relative demand between communicating nodes and the

configuration matrix is updated. After updating the data, the

instance is removed and memory space is freed up for other

requests. This process of node-to-node communication

reduces the cost of reconfiguration and processing

simultaneous requests efficiently, thus maximizing the cloud

utility. Gossip protocol is mainly used because it equalizes

relative demand between two nodes and leaving way for

other queued requests. In this system, instances are created

only after verifying whether the cost of reconfiguration is

less or not and the instances executes gossip protocol

satisfying the dynamic resource allocation and updates the

configuration matrix maintained by resource manager after

sending an intimation to the user with the bus number based

on the query i.e. source, destination and timing. As soon as

the intimation is sent, the instance is deleted so that memory

is freed up for other user request that is queued.

VI. IMPLEMENTATION OF PROPOSED SYSTEM

We made use of Cloud Sim tool for the implementation of

the proposed system. The below java coding is an illustration

of how the request is taken to the datacenter and then the

resource is allocated dynamically in cloud.

The following code is used to take the request to the data

center and evaluate it.

Protected void Characteristics resources (SimEvent ev)

{DatacenterCharacteristicscharacteristics=(DatacenterChara

cteristics)ev.getData();getDatacenterCharacteristicsList().pu

t(characteristics.getId(),characteristics);if(getDatacenterChar

acteristicsList().size()==getDatacenterIdsList().size()){setD

atacenterRequestedIdsList(newArrayList<Integer>());create

VmsInDatacenter(getDatacenterIdsList().get(0));} }

Finally the request is been submitted with the data center id

to which it has been allocated

protected void processCloudletReturn(SimEvent ev)

{Cloudletcloudlet=(Cloudlet)ev.getData();getCloudletRecei

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

519

ACTIVE THREAD:

do once every δ time units

q= getPeer(state)

sp =prepareMsg(state,q)

send (REQ, sp, p) to q

PASSIVE THREAD:

do forever

receive (t, sq, q) from *

if (t=REQ) then

sp =prepareMsg (state,q)

send (REP, sp, p) to q

state =update (state, sq)

vedList().add(cloudlet);Log.printLine(CloudSim.clock()+":"

+getName()+":Cloudlet"+cloudlet.getCloudletId()+"receive

d");cloudletsSubmitted--;if(getCloudletList().size()==0&&c

loudletsSubmitted==0){//allcloudletsexecutedLog.printLine

(CloudSim.clock()+":"+getName()+":All Cloudlets executed.

Finishing...");clearDatacenters();finishExecution();}else{//s

ome cloudlets haven't finished yet if

(getCloudletList().size()>0 && cloudletsSubmitted==0)

{//all the cloudlets sent finished. It means that some bount

//cloudlet is waiting its VM be created clearDatacenters();

createVmsInDatacenter(0);}} }

VII. CONCLUSION

Thus, the proposed system has high efficiency in allocating

the resources and monitoring the passenger population

without affecting the efficiency and in a cost effective

manner by using cloud computing and gossip algorithm for

dynamic resource allocation. It is advantageous from current

Bus Management System in the sense that the frequency of

buses are regulated based on the demand of passengers

through a particular route at each stop i.e.., frequency of

buses is more through the route which has more passengers at

each bus stop as depicted by the Fig.4 below.

Fig. 4. Graph plotting the frequency of buses VS the population at a stop

REFERENCES

[1] C. Rizos, Public Transport Management System.

[2] “Advanced Transportation Management Technologies-Transit

Management system.”

[3] J. Smith and A. Ruffle, The Transport Asset Management System.

[4] Mentoring. [Online]. Available:

mentoreng.com/solutions/fix-route/index.htm

[5] F. Wuhib, R. Stadler, and M. Spreitzer, “A Gossip Protocol for

Dynamic Resource Management in Large Cloud Environments.”

[6] A. Montresor and G. Paolo, “Gossip protocols for large-scale

distributed systems ."

Ranjith Ramesh is born in Chennai on May 8 1993.

He did his schooling in D.A.V Higher Secondary

School and pursuing his B. Tech Information

Technology in Sri Sairam Engineering College,

Chennai, India. The author is interested in Cloud

computing and currently working on this field to

carry out further research. He had published a paper

in Research Publications. He is currently a member

of IACSIT and IAENG. The author is planning to do

his further studies in cloud computing. The author is interested in debating

and writing articles. He is currently authoring a book named “The Malice”.

Yokesh Ezhilarasu is born in Madurai on May 22

1993. He did his schooling in Velammal

Matriculation Higher Secondary and pursuing his

pre-final year of B. Tech Information Technology in

Sri Sairam Engineering College, Chennai, India. The

author is interested in Cloud computing, Micro

Processors .He is quite crazy and interested towards

mathematical concepts in each subject dealt in his

undergraduate course. He is looking forward to do

future research on Cloud Computing. The author is planning to do his

further studies on Cloud computing / Programming.

Prasanna Ravichandran was born on November

24, 1992, in Chennai. He did is schooling in Sita

Devi Garodia, Chennai and now he pursuing his

pre-final year B. Tech Information Technology in

Sri Sairam Engineering college, Chennai. He

interested in the field of Cloud computing and also

in the field of Networks. He published his

Clouding paper in Research Publication.

Soma Prathibha is currently working as an

associate professor in the Department of

Information Technology at Sri Sairam Engineering

College. She did her Post Graduation in Computer

Science at Sathyabama University, Tamil Nadu and

currently pursuing her PhD in Resource allocation

in cloud computing in Anna University, Chennai.

She has completed her undergraduate degree in

Computer Science at Vijaya nagar Engineering

college, Bellary, Karnataka .She is an expert in programming concepts and

highly interested in cloud computing. She has an total of ten years of

teaching experience. She has attended 4 workshops and has published

papers in various journals and conferences. She was awarded many times

for producing hundred percent results.

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

520

