

Abstract—The paper analyzes the current state of software

system in a leading Saudi University described as ‘legacy

system’ in terms of functionality and ability to be modified in

the face of ever increasing e-government requirements. The

natural course of action taken by CEOs in similar settings is

purchasing and installing an entirely new system, a decision

which inevitably entails the risks of costing huge sums of money

and compromising older business models. Subsequently,

lengthy and complicated setting up may be required and the

new system therefore is not always financially viable. An

alternative model to re-architect the legacy systems instead of

installing a new one suddenly makes sense. We attempt to

establish the viability of our approach and account for the

commercial and practical advantages as opposed to the other

solution. The proposed solution is the first step towards

facilitating the adoption of e-business models to automate the

entire processes within that institute.

Index Terms—Legacy systems, SOA, e-government, business

process, Baz tool.

I. INTRODUCTION

Responding to rapidly changing IT environments –

including but not limited to expanding e-government

applications in various institutions and corporations- requires

adopting a reliable, versatile yet exceptionally flexible

computing systems capable of accommodating the old,

current and future applications. The modifications must be

carried out efficiently and smoothly while keeping old

business needs intact [1]–[2]. In this sense, such a system is

as a mandatory requirement for any company/institute with

ambitions, not an option.

Adaptable systems nevertheless are not readily available

even for large private companies, public organizations,

government agencies, hospitals, municipalities, and

universities in Saudi Arabia. Studies show that these

institutes run and maintain their respective legacy systems as

far as long as they provide the basic necessary functionality.

Despite that, these organizations are aware of the rapidly

changing IT market and are duly planning to replace their old

systems at some point should finical resources become

available, given the high costs associated with buying and

installing a new replacement. They may also consider the

cost-effective yet unproven option of modernizing their

Manuscript received November 10, 2012; revised December 21, 2012.

Basem Y. Alkazemi is with Umm Al Qura University

(bykazemi@uqu.edu.sa).

current [3].

Many challenges stem from the nature of legacy systems

which, as the name suggests, are not always modifiable.

Systems are usually treated as black boxes not because they

lack documentations or availability of the source code.

Rather, the systems are poorly architected in the sense they

can no longer cope with new business needs. This scenario in

fact is one of the key barriers to adopt any potential

e-government business models we identified. Poorly

architected legacy systems entail in many instances the

decision by CEOs to buy and install entirely new systems are

reported earlier. However, such a decision should be

informed and well researched. It entails significant

consequences in terms of costs associated with purchasing

and efforts in installing and setting up. Moreover, legacy

systems usually provide highly customized functionalities

none of the available solutions in the market can usually

provide if purchased as is. For example, setting up new

systems may require significant modifications for up to

several years to comply with old business needs while

accommodating newer ones.

This research aims at investigating an architectural model

to analyze the feasibility of refactoring legacy systems. The

outcome should help CEOs make informed decisions based

on findings of thorough analytical studies on whether to

initiate modernizing legacy systems projects or simply

approve purchasing new solutions from the market.

II. BACKGROUND WORK

Umm Al - Qura University (UQU) [4] is a typical Saudi

organization running a legacy system and subsequently is in

need of an urgent update. UQU therefore was selected as the

case study of the proposed model with the purpose of

creating a fully integrated environment that supports

e-government business. While the institution needs a

fundamental solution to cope with the changing environment,

interrupting the routine working activities should not be

affected. Funding is also a major consideration that

influences any decision regarding major development plans.

From a historical perspective, Umm Al-Qura University

launched its information systems in early 2001 to serve

around 3600 employees and just over 40,000 students at the

time. The system runs an outdated code systems based on

Oracle 6i for forms and reports, which are built entirely on

client-server pattern [5]. The major subsidiaries include an

Refactoring Legacy Software Systems into SOA

Compatible Style to Support e-Business Development in

Enterprise Organizations: The Case of Umm Al-Qura

University’s Systems

Basem Y. Alkazemi, Abdullah Baz, and Grami M. Grami

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

465DOI: 10.7763/IJEEEE.2012.V2.165

in-house Enterprise Resource Planning (ERP), Student

Information System (SIS), Library Information System (LIS),

and Healthcare Information System (HIS).

Twelve years later, the system started to struggle with the

new environment because of the increase of the number of

users and the pressure to support e-government models. The

12-year old systems are still in operation today serving

around 75,000 students and more than 7000 employees, an

almost two-fold increase compared to 2001, be it with minor

changes to the original core functionality. Moreover,

software systems lack many capabilities which are

considered core-requirement these days including

compatibility with different environments (e.g. Mobile

devices) and the services provided to students and faculty

members in the University.

Additionally, due to the emerging e-government

movements in Saudi Arabia, organizations need to apply

major changes to their core systems in order to accommodate

new requirements; one of which is process automation that

solely requires splitting functional aspects of an application

from the business aspects.

Unfortunately, the modifications attempts carried out by

IT departments to add features to the systems are largely

random. Specifically, business processes are implemented

directly into the forms confusing the functional aspects of an

application with the non-functional parts. As a result, the

complexity of UQU systems is rapidly complicating in a

pattern that will inevitably become hard to manage in

continues.

III. BUSINESS REQUIREMENTS AT UQU

As expected from a major educational and research

institution, UQU’s main objectives are centered on providing

high quality teaching and research services to the community

in different knowledge areas including medical sciences,

engineering, and computer sciences. In the backend, many

organizational activities take place in the form of processes

that provide services to various users within the university.

All services provided (i.e. faculties, employees, students)

must meet the standards of certain Service Level Agreement

(SLA) in order to guarantee the quality of service provided to

users. Based on this criterion, we identified a number of

driving forces that describe the potential business

requirement for adopting a sophisticated software system to

serve the needs of the university members; these include:

 Considerable increase of users: the number of students

in the university has increased sharply which in turn

required a considerable increase in the number of

faculties and employees. This extra pressure calls for a

smooth platform of interaction between the different

parties and also a reliable system architecture that can be

expanded to accommodate different services (e.g. payroll,

allowances, admission and registration, scheduling).

 The establishment of new campuses: the university has

established a number of branches since the original

systems were first installed all of which expect a similar

level of IT support. Currently the university uses paper

based correspondences an application forms to provide

services. This traditional system of management causes

considerable delays in processing applications especially

when dealing with dependent campuses. As a result, there

is mounting pressure to establish a fully integrated

e-services system that can be accessed remotely from the

web, significantly reducing delays of sending documents

for processing.

 Automated processes within/between departments:

even though some departments in the university run

software applications which in theory should help the

application processing, these applications are in fact data

entry forms fed into databases. However, the flow of data

within/between departments is very much carried out

manually; this practice much like the one discussed

before it requires handling the applications between

different offices.

 Facilitate data exchange with other establishments:

UQU occasionally receives requests from other

establishments (e.g. Ministry of Higher Education) to

provide statistics and other facts about activities and

projects. We observed that the requested data are usually

posted as reports to the requestors. Reports generation is a

time consuming task. As a result, we propose establishing

secured web services that allow different governmental

entities to retrieve their required data automatically

without disturbing UQU business.

 Provide services on different platforms: with the

emergence of smartphones and tablet computers it

becomes necessary that the university provides its

services not only electronically but also in a form

compatible with these different platforms. The current

application architecture is built on client-server pattern.

While this pattern might have served UQU well when the

system was first envisaged, the system will not support

the adoption of modern business model. So, the

establishment of web services in a SOA [6] composite is a

necessary requirement. We have generated a comparison

matrix of three commonly known architectural styles in

the market namely, client-server, n-tier, SOA. Table I

below presents this matrix.

 Support higher management and decision makers: the

significant growth in operations makes it necessary to

monitor the progress of its different businesses by higher

managements (i.e. Rector). Currently, few reporting

applications are provided to the higher managements that

give very limited KPIs. This shortcoming requires

constantly visiting different sites of the universities to get

live updates of progression. We believe this is another

time consuming practice that may affect the core duties of

higher mangers. We also believe a fully integrated system

architecture can facilitate the establishment of Business

Inelegance (BI) model on top of it in order to serve the

higher management business needs.

 Facilitate smooth cross-applications interactions:

Different applications interact with each other randomly

where glue-code is used frequently to establish the

linkage. Fig. 1 below exemplifies the current interaction

between different applications within the ERP system of

university.

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

466

TABLE I: ARCHITECTURAL STYLES MATRIX

Fig. 1. Current view of system design at UQU

As the above diagram shows, the ERP system is highly

complex and the situation is most likely going to worsen

should the university expanded the system to accommodate

new emerging business needs in the same manner. Our work

mainly addresses this point as we are trying to establish a

well-organized SOA based system architecture that can

facilitate extensibility in a controlled manner.

Based on these business requirements, we can conclude

that current systems architecture at UQU is not capable of

expanding the university business. The goal of this project is

to establish new system architecture capable of

accommodating emerging business needs and subsequently

fulfills UQU IT potential.

IV. REFACTORING LEGACY SYSTEMS

Legacy software systems [7] represent the backbone for

many organizations nowadays due its significant value to

fulfill their business needs. However, it is always the case

that organization might be at a great risk if their legacy

systems suffer from any sort of failures as maintaining such

systems can be very hard if not entirely impossible in some

cases. As a result, legacy systems can be either removed with

brand new systems or they can be refactored.

Generally speaking, refactoring is a process of improving

the underlying design and structure of source-code

components that subsequently can improve their

performance and maintainability [8]. Software programmers

and developers exploit this aspect by implementing different

codes to achieve a desired behavior. While different codes

can lead to having the same software behavior, the software

code’s readability and comprehensibility are significantly

affected. However, a more streamlined approach to software

refactoring involves reducing the size of software source

codes. This is achieved mainly by taking certain code paths

which will then be transformed into structures or data at

runtime. Refactoring software is probably a new approach to

software design because, in conventional terms, software

undergoes design before it is developed or built, especially in

the Object Oriented Programming technology that uses

object models. However, developers have learned during

object code implementation that a better design befitted the

object. Refactoring ensures that such a need for

improvements can be accommodated on demand, although it

affects the design review process. However, it is important to

assert that refactoring affects the design and not the

functionality of the software system.

We have I identified a number of different usages of the

term refactoring in the literature. One usage has described

refactoring as the process of removing duplication from

source code in order to enhance its readability and structure

[9]. Another one described refactoring as a mechanism to

generalize source code in order to make it reusable into

deferent contexts [10]. A third usage of the term refactoring

in the literature describes refactoring as a way to identify

design patterns in the internal structure of a system [11].

Our view of refactoring is slightly different than the ones

described above. We are more concerned with modifying the

architecture [12] of software systems than the internal design

and behavior. A comparable model to ours can be found in

[13] which introduced the concept of architecture

refactoring and establish the idea of breaking the code into

more logical units. However the latter’s refactoring approach

deals with extracting methods from huge chunk of code to

enhance the modularity of the code and not like our view that

concerns the overall architecture of the enterprise system.

The term re-architecting will be used to refer to

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

467

refactoring. The precise definition of the term is the process

of modifying the architecture of a legacy software system

without affecting the functional and workflow aspects of it in

order to comply with new architectural style.

V. CONCEPTUAL SYSTEM ARCHITECTURE

Currently, many systems hardcode their business

processes into the source code. In other words, whenever

new business processes are required the original code has to

be modified. Moreover, applications are integrated in a

one-to-one pattern by writing a glue code to achieve the

integration. This glue code is usually written as a mediator

between two applications. Although this approach sounds

like a simple - yet effective - solution to developers, it in fact

results process design being incredibly complicated. In some

cases the glue code is injected into one of the applications

themselves. This is the worst setup as it generates a tangled

code that gets only more complicated over the years

especially when developers are dealing with an enterprise

solution.

The framework uses SOA as an integration facilitator

mechanism not as service delivery. The framework is

composed of different layers that, based on our previous

work for analyzing a number of systems [14], any enterprise

solution in the market must satisfy in order to ensure

flexibility and extensibility of their systems. Figure 1

presents the proposed architecture for an enterprise solution.

Each layer is independent from the surrounding layers in

terms of main function. The description of these layers is as

follows:

 Data Access Layer: this layer is responsible for managing

the interaction between application and database, and

hiding the databases used in the organization.

Subsequently, if different database technologies are used

(e.g. MYSQL, Oracle), this layer will manage the

connectivity with the corresponding source.

Data Access Layer

Business Layer

Exposure Layer

Communication Layer

Orchestration Layer

Policy Layer

Fig. 2. Architectural layers of enterprise solutions

 Business Layer: this layer is responsible for executing the

basic functionality representing organizational business

needs. In the context of an ERP solution, this layer

represents the fundamental modules offered by the

solution such as HR, Finance, Projects, and Sales. Every

one of these modules must be a standalone application

that is not aware of any other modules.

 Exposure Layer: this layer is responsible for exposing the

available applications from the application layers into

services (e.g. web services, com components). All

applications are therefore decoupled from their

underlying environment and made available through

request-response interaction mode.

 Communication Layer: the integration layer is

responsible for establishing the communication pattern

and routing protocols that enable service discovery and

interaction. It defines the policies that comply with the

standards adopted by vendors. For example, web services

interact by exchanging SOAP messages over HTTP

protocol. Any interaction between services must be

accomplished through this layer. This is usually referred

to as the Enterprise Service Bus (ESB) layer.

 Orchestration Layer: this layer defines the business

processes that are employed by an organization. It is

responsible for establishing the sequence by which

services are going to be invoked to satisfy business

requirements. For example, an attendance service might

need to issue a request to a finance service to deduct a

certain amount from an employee salary.

 Policy Layer: this layer is responsible for defining the

privileges for accessing services. A different level of

access rights can therefore be granted at this layer

according to the defined policy.

The identified layers are not interchangeable as they must

build up from the bottom-up. For example, a database can be

established and tables created for an ERP system. Then, a

number of standalone applications are developed on top of

these tables to utilize the data in the tables. These applications

must then be exposed in a standard manner in order to

facilitate their integration with other applications to achieve

new business needs. The new exposed interfaces are pooled

and made ready for requests. Workflows can then be defined

on top of the available pool of services in order to integrate

different applications seamlessly. In fact, a workflow defines

the design of a system where different components can be

executed in a pre-defined sequence. Once all the business

requirements are established (i.e. all functionality is

implemented), there should be privileges assigned to

personnel who are authorized to execute certain processes in

the system.

VI. PROPOSED ARCHITECTURE

UQU is moving steadily and progressively toward

providing its clients with e-government services which goes

in line with the university’s IT ambitions. A main objective

from the university’s website reads “fully automating all the

internal processes and establish rigorous infrastructure

capable of supporting internal and external exchange of

data.” In fact the organization dedicates huge resources and

funds in order to achieve this objective.

This objective requires establishing a comprehensive

architecture in order to facilitate seamless integration of

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

468

different systems. UQU currently operates in three different

environments, SharePoint, PHP, and Oracle. Our proposed

architecture is designed to integrate all systems regardless of

technology in a rather neutral manner. The proposed

architecture model is described below.

The figure illustrates the proposed architecture for

facilitating the adoption of the emerging business need of

UQU with available resources in mind. The main objective of

the model is to promote a fully integrated environment that

facilitates internal and external data exchanges, in addition to

supporting scalability for future development. UQU

currently owns the full package of SharePoint 2010, an

in-house built Oracle ERP solution, a website (and other PHP

services), and an Internet Information Server (IIS).

In the proposed solution, SharePoint is utilized to fulfill

two main roles; the web presence and the service

orchestration layer where business processes are defined

through windows workflow foundations (WWF) provided by

the SharePoint workflow engine. Services are exposed to

SharePoint through the Microsoft-IIS layer where web

services are defined. As a result, every application must be

wrapped and exposed as a standalone web service that can be

consumed by SharePoint.

This capability simulates the basic functionality of the

well-known Enterprise Service Buss (ESB) pattern for

service integration and management which represents the

communication layer for integrating the various applications

in an organization. SharePoint 2010 must work only on SQL

server, hence, in this solution; we propose to use the SQL

server for document flow management purposes without

interfering with the university database by any means.

This architecture proposes a flexible solution to the ERP

system within the UQU and also establishes rigorous

platform for any potential ECM functionality required by the

university. SharePoint 2010 and Microsoft-IIS jointly

provide the necessary pool and management of services.

They facilitate services orchestration in order to enable the

interaction between the different services of the system. Any

new service can be exposed into this layer and then

composed with other services by defining a workflow that

corresponds to a predefined business process model.

MS-IIS

Web Services

Data Access

ora

Oracle ERP Apps

SharePoint (Portal)

SQL

Server

Web based Services

(PHP)

MySQL

Consume

services

Active Directory

WWF/BPEL

Fig. 3. UQU proposed architecture model

Ideally, the resulted architecture should promote high

degree of extensibility and flexibility where different

business processes within or between departments become

fully automated. The first step toward that ultimate goal, as

far as system structure is concerned, is re-architecting of the

legacy system in order to increase the flexibility of IT within

UQU. Re-architecting UQU legacy systems with SOA

concepts in mind allows for a quick response to changing

market needs, can implement IT systems that can quickly

adapt to changing markets, shifting customer requirements,

and new business opportunities.

VII. ANTICIPATED BENEFITS OF THE RE- ARCHITECTING

APPROACH

Legacy systems’ re-architecting is a cost-effective

modernizing alternative to the creation of software systems in

an organization when a new market or business need arises.

Given that purchasing new software entails huge cost

implications on an organization, it is commercially viable to

consider improving the proven legacy systems instead.

The costs associated with buying a new system are rapidly

adding up to the actual price of the software, rollout, and

training. In fact, new systems might cost even more to

maintain in early stages because a system might require

vendor intervention periodically [15]. The alternative

approach in comparison requires low operational costs, with

the software built on existing hardware and other systems

[16].

The re-architecting approach is also a low-risk

modernization option in the sense that existing software is

already tested in dealing with existing business needs. This is

a huge advantage over software systems yet to be piloted and

deemed fit for an organization’s needs. It allows an

organization to transform its existing legacy applications to

meet the current market demands without overhauling the

entire system. This, in turn, minimizes the loss of existing IT

systems’ investments in which the legacy systems hold

crucial information and data that is required in the daily

operations of the organization. Another advantage of this

approach is that re-architecting encourages the development

of a custom software system architecture that is based on the

organization’s demands and capabilities. This is because this

process allows the re-architecting team to survey and

understand not only the requirements of the new system, but

also the overall capabilities of the organization in managing

the new system.

Consequently, this enables the development of a system

that the organization can use and manage with relative ease.

During the re-architecting operation, highlights that

re-architecting legacy systems gives the development team

an opportunity to transform the current system user interface

to the popular web-based user interface if it is not in place

already. This helps the users interact with the new system in a

friendly manner and, thus, enable the usual operations of the

organizations to run with minimum delays. Software system

re-architecting approach allows customization in the training

of the system users and maintenance teams. This is realized

through re-architecting experts who train the users at each

stage of the development process, thus, enabling them to

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

469

understand the new system. This is achievable since

re-architecting targets certain system enhancements

concerning the central part of the solution which aims at

handling given business needs.

Improving legacy systems helps sustain an organization’s

reputation because it principally helps minimize any

interruption to routine business operations. This means that

customers are faced with a minimal impact, if at all. This is

critical in businesses where reputation is very important,

particularly due to competition. A situation where rolling out

a new system takes many days to complete is not acceptable.

Business operations would have to halt until the system is up

and running while clients may lose patience with an

organization unappreciative to their specific requirement.

Finally, this approach grants an organization the opportunity

to employ modern technical architecture such as Service

Oriented Architecture and Cloud Computing Architecture.

These have tested and happen to require certain levels of

flexibility. For instance, when SOA is implemented to

support business intelligence (BI), it allows a flawless

technology integration to form a consistent BI environment

that makes the delivery of data straightforward while

simultaneously simplifying low latency diagnostics.

VIII. PROPOSED MIGRATION ROADMAP

SMART [17] process, briefly described earlier, helps

examine the feasibility of migrating the legacy systems into

the new SOA-based environment. The following steps are

required to successfully conduct the process:

 Refactor applications in order to eliminate potential

decoupling applications in a way that each provides its

standard set of functionality without reference to other

applications in the system.

 Extract stored PL/SQL procedures in the Oracle DB and

wraps them with containers to be exposed as web

services.

 Business logic must be separate from the Oracle forms

using the Model-View-Controller (MVC) architectural

pattern. In other words, business logics can be accessed

from different views and not restricted to a single usage.

This might be achieved through the migration to the ADF

[18] and extracting the source code from oracle forms and

encapsulate them in a well-defined business component

(BC) models that can be invoked directly by forms. Thus,

functionality embedded in forms can be de-coupled in

self-contained components.

 Establish the linkage between forms, BC web-service,

and PL/SQL web-service. Ideally, forms should be

hardcoded to invoke BC services. However, BC services

must interact with the PL/SQL services via a defined

work flow in order to support dynamic binding. Thus, no

code will be used to establish the linkage between

services.

 The resulted web services must be exposed through

Microsoft-IIS that establishes messages routing protocol

between web services. The Microsoft-IIS is considered as

the service layer.

 Active Directory must be integrated to the service layer in

order to provide credential check and assign basic

privileges to users according to their pre-defined profiles.

 Utilize the workflow (WF) engine provided by

SharePoint 2010 in order to implement business

processes. The implemented WF represents the main

thread of control that establishes the design for

consuming the exposed services. Subsequently, services

can be placed and executed in a sequence to fulfill

business requirements.

 The functional interface must be separated from the

architectural interface. Therefore, UQU team must

identify the business logic including data link, connectors,

and modules life-cycle control code and separate them

from the core functional business logic. This helps

identify the potential functional services directly

consumed by clients and separate them from any

supporting services that may be related to the architecture

of the legacy system.

IX. RE-ARCHITECTING EXPERIMENT

Smart Developer [19] provides the Baz tool that converts

legacy applications built using Oracle Forms to Oracle ADF

11g in a very high speed and punctuality. It saves the

conversion effort by more than 80% from the total project

duration. Baz is a tool to consider for re-architecting legacy

systems in order to comply with the MVC architectural

pattern. One of its distinguished characteristics can be

expressed in the ability to convert directly from any Oracle

Forms version to ADF without converting to Oracle Forms

10G. The tool supports all natural languages including

Right-to-Left direction languages like Arabic. Possibility to

build tailored conversion that suits each customer special

needs. The operation of the Baz tool is conceptually

described in Fig. 4 below.

FMBs

Input

JSP

Output

ora

ora
Java

Java

Controller

View

Model

XML

XML

Embedded

PL/SQL

Misc.

Resource Bundle

Form Triggers

.xsl

Baz Engine

Fig. 4. The operation of Baz tool

UQU has conducted a pilot project in collaboration with

Smart Developer to evaluate the applicability of the Baz tool

to migrate one of its admission modules from Oracle 6i into

ADF, hence provide the information on proceeding in the

proposed re-architecting approach.

The project included a training package to UQU team to

help understand ADF and Baz tool. The overall duration of

this project was 60 days. However, the migration tasks only

lasted for two weeks.

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

470

A total of 21 forms from the admission system were

selected for this pilot project; they include the triggers listed

in Table II.

The selection of forms reflects the needs of the

University’s Department of Admission and Registration as its

operations require accessing the forms off-campus frequently.

The Department used Citrix [20] and VPN to establish the

connection with the university’s network. However, the

response time was extremely slow, in some cases committing

a transaction took more than 25 minutes.

As a result, our selection was in favor of performing the

migration to ADF which will be accessible via the web as

web-services. Thus, eliminates most of the network related

issues that caused the delay in the previous connection

scenario.

TABLE II: SIS ORACLE FORMS

FORM_NAME TITLE

SIS_FORM089 Application Request

SIS_FORM091 Admission Policies

SIS_FORM095 Pre-Approval

SIS_REP270 Smartcard Details

SIS_FORM101 Blacklist

SIS_FORM104 Applicant Information

SIS_FORM023 Applicant Contacts

SIS_FORM147 Admission Procedure

SIS_FORM148 Final-Approve

SIS_FORM153 Enrolment

SIS_FORM151 Qualifying Exams Results

SIS_FORM221 Application withdrawal

SIS_FORM224 Admission Amendment

SIS_FORM270 Admin Exams Date

SIS_FORM300 Qyas Data

ATS_FORM01 Logon

SIS_FORM307 Edit Student Information

SIS_FORM277 nomination

SIS_FORM313 Change Admission type

SIS_FORM324 Filtering Application Requests

SIS_FORM311 Notifications

Baz tool has been applied to every single form listed in the

table above. All the user interfaces have been successfully

converted to JSP.

The tool has been applied to convert 120 triggers within

the FMBs, 89 of which were successfully converted

automatically using the tool and 31 were not. To validate the

output of the Baz tool, all the generated forms and classes

were examined manually to check their functionality. It was

found that 89 JSPs provide similar business logics as those in

the input FMBs. The remaining 31 were considered either

deprecated or required manual conversion. The provisional

listing of omitted triggers is given below:

WHEN-BUTTON-PRESSED

RUN_MNU

WHEN-NEW-FORM-INSTANCE

SET_MENU_ITEMS

PRE-INSERT

POST-QUERY

POST-INSERT

WHEN-NEW-BLOCK-INSTANCE

WHEN-VALIDATE-ITEM

POST-FORMS-COMMIT

WHEN-NEW-FORM-INSTANCE

KEY-COMMIT

WHEN-BUTTON-PRESSED

The overall results of the experiment revealed that the Baz

tool has converted 74.16% of the triggers automatically into

the new architecture in comparison to 25.84% not converted.

The unconverted triggers were the business logics that

require human intervention. The average time and effort

required to complete the conversion of the remaining triggers

were estimated at 45 minutes per trigger totaling 8 working

days.

X. DISCUSSION

Technically speaking, the outcome of this experiment

provides ample support to opt for re-architecting legacy

systems. The SIS module has been converted successfully

into MVC that fits into the SOA style, and the experiment

proved that Baz tool is capable of performing wide range of

conversion as the selected module is fairly complex

compared to the other modules in the system.

Considering other aspects that may affect a decision to

proceed; we identified a matrix to compare buying and

re-architecting. The results displayed in the table are obtained

upon consulting vendors in the market for purchasing a new

system and also upon Smart Developer’s proposal for the

migration project. The summary is in Table III.

TABLE III: BUY VS. RE-ARCHITECT

The table explains the different factors CEOs may wish to

consider prior to making a decision on whether to proceed in

one route or the other. The cost is a major factor and, as far as

re-architecting is concerned, is a great advantage over

purchasing. Other important factors include the amount of

customization and training needed in both situations which

again supports the model proposed. Finally, CEOs should

also consider the long term effect of their decisions including

legal matters of ownership and licensing both of which pay

dividends to the proposed model. The return investment is a

plus point that should always be a factor in the decision.

As a result, we strongly believe that re-architecting legacy

system is much more beneficial to cost-conscious

organizations with a capable IT team who can ensure

conducting the migration smoothly. However, for

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

471

organizations which usually outsource their development

projects, we recommend purchasing over re-architecting as

that will be much more applicable especially if funding is not

a major issue.

XI. CONCLUSION AND FUTURE WORK

This paper accounts for one major obstacle that affects the

decision to adopt e-business solutions in any given

organization which is the lack of standard architecture of the

legacy systems. The paper indicates that re-architecting

legacy system can be beneficial to many organizations in

improving the architecture of their systems without affecting

the underlying business logics. We summarize the main

advantages of re-architecting in the following points:

 Re-architecting connects legacy business logic with

modern technologies and concepts.

 Re-architecting can evolve legacy applications into

SOA-based deployments.

 The new system will require less time spent coding when

modifying or developing logic.

 Being based on SOA concepts and built on an advanced

framework, the new system will be flexible, transparent,

and reliable.

 The new system will be expandable without developing

the risk of a 'spaghetti architecture'.

The Baz tool has been applied to one module of student

information system as a pilot scheme to evaluate its

applicability. The experiment revealed that the Baz tool was

successful in converting Oracle 6i forms into Oracle ADF,

and this is goes in line with the planned re-architecting

outcome where business components have been successfully

extracted and converted into web services.

The next stage is to utilize the Baz tool in performing the

conversion of 6i forms into ADF compatible components for

the remaining applications of the ERP system. Upon the

completion of the conversion process, we will develop

different layers of the proposed design in order to migrate the

entire UQU systems into this new architectural pattern.

REFERENCES

[1] C. Holland and B. Light, “A Critical Success Factors Model for ERP

Implementation,” Software IEEE, vol. 16 no. 3, pp. 30 – 36, 1999.

[2] K. Bennett,

Legacy Systems,” Software, IEE Proceedings, vol. 146, no. 3, pp. 153

– 159, 1999.

[3] R. C, Seacord, D. Plakosh, and G. A. Lewis, Modernnising Legacy

Systems: Software Technologies, Engineering Processes, and

Business Practices, Boston: Pearson Education, 2003.

[4] Umm Al-Qura University. [Online]. Available:

http://www.uqu.edu.sa

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

“Pattern-Oriented Software Architecture,” vol. 1, 1996.

[6] T. Erl, Service-Oriented Architecture: Concepts, Technology, and

Design, Prentice Hall, 2005.

[7] J. McGee, “Legacy Systems: Why History Matters,” Enterprise

Systems Journal, 2005.

[8] T. Mens and Tourwe, “A survey of software refactoring,” IEEE

Transactions on Software Engineering, vol. 30, no. 2, pp. 126-139,

2004.

[9] M. Fowler and K. Beck, Refactoring: improving the design of existing

code. Addison-Wesley Professional, 1999.

[10] H. Washizaki and Y. Fukazawa, “Automated Extract Component

Refactoring.” in Proc. the 4th International Conference on eXtreme

Programming and Agile Processes in Software Engineering (XP2003),

pp. 328-330, 2003.

[11] D. Heuzeroth, T. Holl, G. Högström, and W. Löwe, “Automatic

Design Pattern Detection,” in Proc. the 11th International Workshop

on Program Comprehension co-located with 25th International

Conference on Software Engineering, 2003.

[12] L. Bass, P. Clements, and R. Kazma, Software Architecture in

Practice, 3rd Edition, SEI Series in Software Engineering, 2012.

[13] S. Michael, Software Architecture Refactoring, OOPSLA, Tutorial

T12, Montréal, Québec, Canada 2007.

[14] B. Y. Alkazemi, “A Conceptual Framework to Analyze Enterprise

Business Solutions from a Software Architecture Perspective,” the

IJCSI, vol. 9, no. 3, 2012.

[15] D. Reeves, “Legacy systems re-engineering: leveraging your existing

assets,” Revenue Solutions, Inc, 2009.

[16] A. Umar and A. Zordan, “Reengineering for service oriented

architectures: a strategic decision model for integration versus

migration,” Journal of Systems and Software, vol. 82, no. 3, pp. 56 –

64, 2008.

[17] L. Grace, M. Edwin, S. Dennis, and S. Soumya. “SMART: Analyzing

the Reuse Potential of Legacy Components in a Service-Oriented

Architecture Environment,” CMU/SEI-2008-TN-008. Software

Engineering Institute, Carnegie Mellon University, 2008.

[18] M. Driver. (2012). Oracle Application Development Framework: Past,

Present and Future, Gartner. [Online]. Available:

http://www.gartner.com/technology/reprints.do?id=1-1BU762S&ct=

120827&st=sb

[19] Smart Developer Co. [Online]. Available:

http://www.sd4it.com/Baz.html

[20] Critix Website. [Online]. Available: http://www.citrix.com/

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 6, December 2012

472

M. Ramage, and M. Munro, M. Decision “Model for

http://www.amazon.com/Len-Bass/e/B001ILFOQA/ref=sr_ntt_srch_lnk_1?qid=1352878537&sr=1-1
http://www.gartner.com/technology/reprints.do?id=1-1BU762S&ct=120827&st=sb
http://www.gartner.com/technology/reprints.do?id=1-1BU762S&ct=120827&st=sb
http://www.citrix.com/

