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Abstract—Assessment consistency is not easy to maintain 

across many assessors for a unit of a large student population, 

particularly when a great many of those assessors are not 

regular staff. This work proposes an assessor reallocation 

approach, with some variants, to assign assessors to marking 

new assessment items for the different students based on the 

assessors' earlier marking statistics in comparison with that of 

the other assessors. This is to minimize the potential 

accumulation of marking discrepancies without having to resort 

to additional staff training which can often be impossible within 

the allowed time or budget frame. More specifically, we will 

first estimate the individual assessors' marking inclination or 

tendency, termed “bias” for simplicity, against the average for 

each particular assessment item, then profile each assessor by 

balancing such biases over a number of assessment items 

already marked, and subsequently predict for each student the 

potential bias he is likely to receive when marked by the 

different assessors. The proposed algorithm will finally select 

the assessor for the next assessment item so that it will lead to 

pro-rata the smallest difference with respect to the average of 

the accumulated total marking biases. This approach is 

objective and independent of the subjects being delivered, and 

can be readily applied, particularly in the context of e-learning 

or e-education, to any assessment tasks that involve multiple 

assessors in parallel over a number of assessment items. 

 
Index Terms—Assessment consistency, balance assessors’ 

biases, marks rescaling, universal algorithm. 

 

I. INTRODUCTION 

Delivering a subject or unit to a huge cohort of students at 

a university, possibly across multiple campuses, is 

fundamentally more challenging than just to a small 

classroom. Many advances have been made in this regard 

including the use or development of various pertinent 

technologies [1]-[3]. For a cohort of several hundreds of 

students or more, a teaching team is almost always necessary 

to co-teach the whole unit with repeated deliveries at 

different timeslots and on different campuses. As the student 

demographics evolves from year to year, fluctuation in the 

cohort enrolment can deviate significantly from the most 

intelligent expectations. As a result of this, or simply because 

of the academic structure of a delivering school, some or 

even a great many of casual teaching staff members may have 

to be recruited to teach the same unit, often under a short 

notice. Regardless a teaching staff is permanent or casual, 

although academic qualifications and skills are in general 

suitably ensured, their teaching experiences can vary 
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significantly and thus lead to potential inconsistency in both 

teaching and assessments. Such an inconsistency can be quite 

sizable if quite a few inexperienced new casual staff had to be 

employed to joint the teaching team. These problems that are 

inherent of large classes are also studied [4], [5] recently and 

it was found that the students' perception of difference in 

grade was not unfounded, and the problem was exacerbated 

by other factors such as the inconsistencies in the language 

markers use when providing the feedback. While effective 

and consistent assessment has always been actively studied, 

for such as the design [6] and for the group work [7], most of 

the studies on the assessment have been somewhat subjective 

and are also closely linked with the individual subjects. For 

instance, it was found [8] that the marking of a given 

assessment item tends to receive a better mark if the marking 

is immediately preceded by marking a poorer work of the 

same item. If the marking of the same work is preceded 

immediately by a better work then the marker tends to give a 

poorer mark. Moreover, individual assessors vary in their 

level of leniency or “biases”, and the leniency of most 

assessors remains internally consistent throughout the local 

marking batches [9]. One exception to such subjective 

assessments is the so-called grading on the curve [10], [11] 

which determines the student grades according to the normal 

distribution of the marks. The main purpose of this work is to 

develop a subject-independent mechanism that can improve 

the overall marking consistency and fairness without having 

to delve into the performance of the individual assessors 

among a large number of disparate or inhomogeneous 

teaching team members. We note that even though our 

proposed work is possibly one of the very few, if not the first, 

of its kind in terms of an objective, universal and systematic 

algorithm in ensuring the marks consistency, these above 

mentioned conclusions by such as Spear and Lunz and 

O’Neil in fact also implicitly justify the consistency 

principles we use in devising our assessor reallocation 

scheme. 

In a typical format of a tertiary unit of several hundreds of 

students across several campuses, we assume its delivery 

consists of repeated lectures, and repeated tutorial and/or 

practical classes of about 20 students per class, student 

assignments, an optional mid-semester test, and a final 

examination. Since it is feasible for the marking of 

mid-semester tests and final examinations to be maintained 

uniform and therefore fair across the student population, the 

largest marking discrepancy comes from the assessment of 

the student assignments as this often heavily depends on the 

casuals. The traditional approach to reducing the marking 

consistency relies on training the new staff, and supplying 

very specific marking criteria. However this may at times not 
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be sufficient and the former may not be feasible. Moreover, 

subjective biases can be simply unavoidable when an 

assessment item is design based or even opinion based. 

Unless in the extreme cases where assessment errors are so 

obvious and prominent, it is simply not an option to ask a 

marker to do any form of reassessment. Marks rescaling for 

certain groups of students may seem as another valid choice, 

but it can be difficult to have it formally justified to all those 

involved. Our purpose here is thus to reallocate the marking 

tasks to different assessors for the different assessment items 

so that the inconsistency generic to the individuality of the 

assessors is well spread out and compensated over several 

items as much as possible. 

This paper is organized as follows. First in section 2, we 

introduce a simple marks rescaling technique and then 

propose a framework to reassign the new marking duties 

according to the marks distribution of the earlier assessment 

items, so as to minimize the accumulated marking 

inconsistencies. Section 3 then investigates each individual 

marker's marking biases and measures their corresponding 

total bias accumulation. Section 4 subsequently proposes a 

major assessor reallocation algorithm, the 

Worse-Paired-First algorithm, along with several variant 

extensions. Section 5 is then dedicated to further justification 

of our proposed methodology via both the experimental 

simulations and an actual subject delivery. Finally section 6 

gives a brief conclusion. 

 

II. MARKS CONSISTENCY AND FAIRNESS WITH MULTIPLE 

ASSESSMENT ITEMS 

Marks inconsistency across different assessors is almost 

inevitable. For the staff collegiality it is never really a good 

practice to ask anyone to go back and refine parts of their 

earlier markings, unless blatant carelessness is observed for 

some of the casual staff. All these point to the need to develop 

a mechanism that can lead to more consistent marks through 

potential marks rescaling and/or shuffling the students 

among the assessors for the later assessment items. In this 

section, we will first give a rescaling scheme that can be 

applied directly to realign the marks that are already available 

from different assessors. We will then explore how to 

allocate later assessment items to different markers according 

to the existing marks statistics for their respective groups of 

students, so as to minimize the accumulation of the marking 

discrepancies or biases. For simplicity we may use 

assignment to refer to an assessment item of any form, and 

may use tutor to equivalently refer to an assessor or marker. 

For a particular assignment, we assume that all the students 

who submitted the assignment will be organized into n 

groups each of which is assigned to a different marker. Each 

such group can be composed of the students of several 

tutorial classes although they will be typically selected from 

different tutorial classes for a “shuffling” of the markers. Let 

T= {1, 2, …, k} denote the set of all the tutors, i.e. the markers. 

Since it is generally accepted that student marks observe a 

normal distribution [10], [12], a simple rescaling described in 

(1) below can be applied to transform the marks consistently 

into those of a more desirable or anticipated distribution. 

Suppose for all the student marks Ms, s=1, …, K, the mean 

and the standard deviation are   and  respectively. Then for 

any target  and , the new marks Ms
 rescaled from Ms via 

Ms
 = + (Ms  ) , s=1, …, K     (1) 

will have  and  as the mean and the standard deviation 

respectively. 

Suppose N assignments for each student have already been 

marked by a mixture of different tutors. Then for the next 

assessment item, the (N+1)-th assignment, which tutor 

should be assigned to mark which student’s work so as to 

minimise the total bias that may be intrinsic to each 

individual tutor? Let S={ s } denote the set of all students, 

T={ t } with t0 denote the set of all the (marking) tutors, and 

T*=T { 0 } in which t=0 refers to a virtual assessor 

“responsible” for those who didn’t submit the assignments. 

For each student sS and each integer n with 1≤n≤N, there 

exists a mapping n such that t=n(s) denotes that the n-th 

assignment for student s had been marked by tutor t if tT, or 

the assignment was not submitted at all if t=0. Our task is to 

determine an allocation mapping N+1: ST* to best 

compensate the total biases already experienced in marking 

the first N assessment items. 

Let Sn={sS: n (s) T}. Then the set Sn 
(t) ={s Sn: t=n(s)} 

denotes all the students whose n-th assignment is marked by 

the t-th tutor. Hence for the n-th assignment, its marking 

details are completely determined by the Sn, n, wn,  and n, 

where wn represents the positive weight of the assessment 

item and n gives the grading percentage xn,s via n(s) for each 

student sS, i.e. xn,s=n(s) and 0≤ xn,s ≤1. The actual mark 

student s received for this n-th assignment is thus wnxn,s. We 

note however that in practice one may choose xn,s to be within 

the range of  0 to 10 because this wouldn’t impact on our 

main scheme in this work but would be intuitively more 

meaningful. 

For each student s, if tutor t=n(s) has marked the student’s 

n-th assignment, then the (percentage) mark xn,s will be 

denoted by xn,s
(t). This means the mark for the n-th assignment 

by the t-th tutor, {xn,s
(t) } for sSn 

(t), has Kn
(t) = |Sn

(t)| elements, 

where |P| for any set P denotes the number of elements in the 

set. Hence Kn =tT Kn
(t) is the total number of students who 

submitted the n-th assignment, and K =
N

n=1 Kn
  is the total 

number of student submissions. For each tutor tT, we 

denote by n
(t) and n

(t) respectively the mean and the 

standard deviation for the marks { xn,s
(t) } for sSn

(t) given by 

tutor t for the n-th assignment. Likewise we denote by (t) and 

(t) respectively the mean and the standard deviation for the 

{xn,s
(t) } over all the s and n with sSn

(t) and 1≤n≤N. We 

also denote by n and n respectively the overall mean and 

standard deviation of the marks of the n-th assignment for the 

submitted students. For convenience we also set n
(0)= n and 

n
(0)= n. We recall that  and  are the mean and the 

standard deviation of all the marks for the submitted N 

assignments. Since each tutor has his own marking tendency 

in such as marking leniently or harshly, we want to first 

establish the individual behaviour profile for each tutor in 

terms of his deviation or bias from the average by analysing 

their past marking statistics, and then assign tutors to the next 

assignment so that the accumulated biases are well-spread 
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out and fair among all the students. The workflow of this 

strategy is depicted in Fig. 1, which will be gradually fulfilled 

later on. 

 
Since the rescaling (1) is essentially a linear filter, and 

linear filters are known to exhibit rich properties, see e.g. [13], 

[14], we thus expect also a similarly rich collection of data 

relationships. For instance, if the data Ms
 are rescaled via (1) 

from  and  to  and , and then to  and ,  then it is the 

same as rescaling them directly from  and  to  and  in 

one step. Moreover, the transform Ms  Ms in (1) is 

invertible whenever  0. 

We are now ready to synthesise the statistics for the past 

marks. If the marks weight wn for the n-th assignment is not 

equal to the weight wn for the n-th assignment, then we 

should also give different weight to the marking results. 

Hence we have 
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Since the smallest granularity for the statistics of the 

student marks is on the t-th group for the n-th assignment, we 

can derive them via  
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for all the t’s and n’s. In fact some other important statistics 

can also be presented in terms of these n
(t) and n

(t) via  

 
      











N

n

t

nn

t

n

tt

n

N

n

t

nn

t

t

n

t

n

N

n

t

nn

N

n

t

n

t

nn

t

KwKw

SKKwKw

1

)(2)()(2)(

1

)(2)(

)()(

1

)(

1

)()()(

/)(

,,/




    (4) 

for each marker t and  

 

    











Tt

t

Tt

ttt

N

n

t

nn

t

Tt

t

Tt

tt

KK

KwKKK

)(2)(2)()(2

1

)()()()()(

/)(

,,/




        (5) 

for the overall. We note that we have also verified these 

formulas numerically. 

 

III. PROFILING MARKERS' BIASES AND MEASURING THE 

ACCUMULATED BIAS FOR A STUDENT 

We now examine how to effectively profile the markers’ 

biases exhibited in the past marked N assignments. The term 

bias, however, should not be thought of as something that is 

necessarily wrong or even improper. It is here largely used to 

measure the extent of the inconsistency among the otherwise 

well-qualified markers. In other words, if each assignment 

had been marked by any single tutor for the whole cohort, 

then all the marks will be deemed appropriate, consistent and 

fair among all the students. Since it is in general not possible, 

even for a single assessment item, to have a single marker for 

a large cohort of students clustered on several campuses, the 

need to reallocate markers for the different assignments 

arises. The ever increasing trend of paperless electronic 

submissions by the students has also greatly facilitated this 

undertaking. 

Without loss of generality, we will always assume that for 

any n the marks for the n-th assignment will not be identical 

for all the students, i.e. n 0, otherwise it wouldn’t make 

sense to use such identical marks to measure the marking 

biases. Although one can simply collect all such marks and 

directly calculate the mean  
(t) and the standard deviation (t) 

to measure their difference with the overall  and  for a 

particular tutor t, we should first take into consideration the 

inhomogeneity of the different assessment tasks. To envisage 

this, we first imagine that a single tutor marked the n-th 

assignment for the whole cohort in two halves. The mean and 

the standard deviation are calculated separately for these two 

halves. We can comfortably expect that they will be almost 

exactly the same, at least when the cohort is large enough. 

However, if a single tutor marked both the n-th assignment 

and the n-th assignment for the whole cohort, we still have to 

expect that the statistics for these two different assignments 

will in general differ, regardless the size of the cohort. 

In order to homogenize the statistics across the marks for 

the different assignments, we normalize the marks xn,s
(t) for 

each assignment to x*n,s
(t)  via 

x*n,s
(t) = -   + (xn,s

(t)  n) 
-  n, tT, s=1,..,Kn, n=1,..,N     (6) 

against any base pair and. For the rescaled marks 

{ x*n,s
(t)  } we will calculate the statistics *n 

(t), *n
(t),  *(t), 

*(t), *n
 , *n , *, and * respectively in parallel to those 

without the *’s. These *-ed statistics constitute the bias 

profiling for all the tutors, and *= and *=. More 

specifically, in our proposed tutor reallocation scheme, we 

will use {xn,s
(t)  } to measure the biases accumulated over the 

marked assignments,  use { x*n,s
(t)  } to predict the biases in 

the next assignment to be marked, and then reallocate the 

tutors so that the combined biases are shared evenly or 

pro-rata across all the students. In fact, * 
(t) and * 

(t) can be 

explicitly represented by 

* (t) = -  +-  
nn

t

n

N

n

t

n  /)( )(

1

)(  
, 

 


N

n

t

nn

t

nn

t

n KwKw
1'

)(

''

)()( / , 

[* (t)] 2 = -  2 2)(

1

)( ]/[ n

t

n

N

n

t

n  
 + 2

1

)()( ]/)[( 


N

n nn

t

n

t

n   

  


N

n nn

t

n

t

n1

2)()( ]/)([   .                  (7) 

We note that even though we deliberately leave out the 

mathematical proofs here and elsewhere in this work for 

simplicity in order not to overstretch the coverage and 

complicate the main theme of this work unnecessarily with 

Fig. 1. Workflow to assign markers 
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the derivational details, important formulae such as (7), (4) 

and (5) are nonetheless also verified numerically. 

Let the statistics under tilde, such as ~ (t) and ~ (t), denote 

those for the marks of the (N+1)-th assignment. Then we 

have 

~ (t) = ~  + (* 
(t)   -  )~ /-  ,   ~ (t) = * 

(t)  ~ /-        (8) 

and we may also make use of *=-  , *=-  , and ~ = , ~ = 

due to respectively (6) and the marks prediction. We note that 

the homogenization via (6) is essentially redundant if N=1, 

and this is because there are no multi-assignments that would 

need to be balanced out through the homogenization. 

Since (7) allows us to predict the statistical behaviour or 

bias of each tutor for the (N+1)-th assignment, we now 

proceed to measure the accumulation of all the previous 

biases for each tutor. For simplicity we set -  = and -  =. 

For a given student s, if tutor t is assigned to mark the 

student’s (N+1)-th assignment, then the total biases 

accumulated in the mean can be estimated as D(s, t, wN+1) 

where 

),(')',',( )'*(   t
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becomes 0 if student s didn’t submit the n-th 

assignment. We note that D in (9) simply represents the 

linear summation of all the previous N biases in mean 

(denoted by s) with the predicted bias in mean for the 

(N+1)-th assignment.  As for the accumulated biases in the 

standard deviation, it can be similarly modelled by D(s, t, 

wN+1) via 

D(s, t, w)= |d+d-| + (2)min(d+, d-),  0 2,     (10) 

where d(s,t,w) are respectively the sum of the positive and 

negative terms in 
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where 
)(s

n
n  simply becomes 

n  if student s didn’t submit 

the n-th assignment. We note that =0 corresponds to the 

extreme case of (direct sum of all the  differences) D= d+ + 

d-, =1 to D=max (d), while =2 corresponds to the other 

extreme case of D= |d+  d-|. The denominators in (11) and 

(12) are to make the calculation percentage-wise. We also 

note that the case =0 in fact corresponds to the direct sum of 

all the accumulated deviation differences and the predicted 

deviation difference for the (N+1)-th assignment. The reason 

for using the model (10) is that the meaning of     is 

not the same for the different signs even though || 

remains the same in both cases. To better gauge the closeness 

of  and , we hence measured both the difference || 

and the overlap min(,). 

 

IV. MARKER REALLOCATION ALGORITHMS 

We are now ready to design the marker reallocation 

algorithm based on the statistics established in the previous 

sections. The main workflow for the reallocation is already 

depicted in Fig. 1. Some of the conditions governing the 

input and output can be summarised as the following 

(C.1)  wn > 0,  n: ST*,  n: Sℝ +,   n=1, ..., N;  wN+1 >0 

(C.2)  S S,  K(t) 0,  tT K(t)  | S| , 

(C.3)  ( S)  T,  ( SS)  { 0 }, 

(C.4)  |1(t)|  K(t),  t T, 

(C.5)   1>0 such that |1(t)|  K(t), t T,          (13) 

where S denotes the set of students whose new, i.e. (N+1)-th, 

assignments need to be allocated to suitable markers,  and the 

allocation quota K(t) denotes the maximum number of 

students whose new assignments could be contracted to be 

marked by the t-th tutor. The input to our algorithm should 

obviously include all the marks for the first N assignments 

and who actually marked which assignment for which 

student. This input can thus be symbolically represented by 

(C.1), and (C.2) implies that the students for the new 

assignment are already contained in the existing ones and the 

sum of the entire duty quota is sufficient to cover all the 

students. We note that providing the mapping n is essentially 

the same as providing all the marks {xn,s
(t)  }. The expected 

output is simply a tutor-assigning mapping : ST* such 

that (C.3)-(C.5) typically hold. In fact (C.5) is optional and 

implies that the total number of students assigned to each 

tutor should be proportional to their quota, if not all their 

quotas can be exactly met. (C.4) simply says the total number 

of students assigned to the t-th tutor should not exceed the 

quota K(t). And (C.3) means the work submitted by the 

students in S will be assigned tutors in T, and the rest of 

students didn’t make the submissions. When one by one each 

student is being assigned a suitable tutor for the new 

assignment, students who suffered the most “biases” 

accumulated over the past N assignments should be given 

higher priority in finding the most suitable tutor so as to best 

compensate the past marking biases. For this purpose, we let 

U be an ordered list of the set S, sorted in the decreasing 

order of (|s|, |s|), where s is defined in (9) and 

s= |+
s  

s| + (2-)min(+
s, 

s)            (14) 

is defined along the same line as (10) and (11). In the case of 

two students having exactly the same ranking, the student 

with a higher total weight of the previously submitted 

assignments will be ahead of the other student. Hence the 

students who didn’t submit any previous assignments will sit 

at the bottom of the list. 

For a fairer scheme, we also randomise the ordering of the 

elements of U within the same band, i.e. the elements of the 

same |s| and |s|. Let ||s|| |s|+|s| for all sS, we 

propose the following algorithm for the tutor reallocation. 

WORST-PAIRED-FIRST ALLOCATION ALGORITHM: 

Input:      (C.1-C.2) in (13)  

Output:   (C.3-C.4) in (13) 

Parameters: 

: error tolerance for  to compensate  (default: 0)  

: coupling constant in (10) and (14) (default: 0)  

w: shorthand for wN+1, i.e. w=wN+1 
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Variables: 

U:  list of students to be each allocated to a marker 

Ut: set of students assigned to marker t 

Qt: adjusted marking quota for marker t 

Rt: number of elements currently in Ut 

Pre-processing: 

 Set Qt  K(t), and then reduce Qt proportionally so that 

tT Qt = |S|.  
 Round Qt up or down to the nearby integer while 

maintaining tT Qt = |S|. 

Algorithm: 

i) Initialisation: U  S; Ut ,  Rt 0,  tT. 

ii) Calculate  
(t), (t), , , s, s,  tT, via (4) etc. 

iii) Calculate * 
(t) and * 

(t) via (7) for all tT, taking -  =, 

-  =, ~ (t) =* 
(t), and ~ (t) = * 

(t). 

iv) Sort U in the decreasing order of (|s|, |s|), see (9) 
and (14). 

v) If U=, go to step xii). 

vi) Let s be the 1st element of U, set ||s||=|s|+|s|. 
vii) If ||s||=0, randomly allocate all the students in U: 

a) For all tT such that Rt < Qt, randomly pick QtRt 
students V from U, assign them to tutor t, and then 

remove them from U, i.e. set Ut = Ut V, U=UV, 
and then set Rt=Qt  

b) Go back to step v). 

viii) Otherwise (i.e. ||s||0), find a tT such that  

w(~ (t) ~ )sign(s),             (15) 

i.e. w(*(t) *)sign(s), is the smallest (i.e. most 

negative) among all those tT with Rt<Qt. 

ix) Find a tT such that |D(s,t,w)| is the smallest among 

all those tT with Rt<Qt and 

       |( |D(s,t,w)|  |D(s,t,w)| )|  .                       (16) 

If tt, set t=t. 

x) Set U= N

n 1
{ sU:  n(s)=(s) }.  

a) If |U| QtRt, randomly pick QtRt students V 

from U, assign them to marker t, and then remove 

them from U, i.e. set Ut =Ut V, U=UV, and then 

set Rt=Qt. 

b) If |U|< QtRt, assign all students in U to marker t, 

and then remove U from U, i.e. set Ut =Ut U, 

U=UU, and then set Rt=Rt+|U|. 
xi) Go back to step v). 

xii) Each marker tT is assigned to mark the new assignment 
for those students precisely contained in Ut. 

There can also be variations on the above algorithm. For 

instance, the current algorithm is based on matching the 

student of the most positively biased total marks with the 

most negatively biased assessor for the (N+1)-th assignment, 

that is, via (15). However, for any given student, we can also 

search for a new marker that leads to the smallest 

accumulation of the biases instead of (15). Consequently we 

have a variant called 

MANY-TO-NEXT ALLOCATION ALGORITHM: 

(Note: The Input, Output, Parameters, and Pre-processing 

remain the same as in the WORST-PAIRED-FIRST 

algorithm) 

i)-vii) Same as in the WORST-PAIRED-FIRST algorithm. 

viii) If ||s||0, find a tT such that |D(s,t,w)| is the 

smallest among all those tT with Rt<Qt.  

ix)-xii) Same as in the WORST-PAIRED-FIRST algorithm. 

We note that Uin step x) contains students of the same 

status in that they have been assigned to the same tutor for the 

same assignment. Hence step x) allows such students to be 

essentially batch processed. We also note that step vii) a) 

makes good sense when those who didn’t submit earlier 

assignments are equally likely to submit the latest assignment 

just like the others. However, the reality might be different in 

that students who failed to submit all the previous 

assignments are mostly the weak students and will most 

likely not submit the latest assignment either, since a later 

assignment is in general more challenging than the earlier 

ones. If this is the case, then step vii)a) would lead to those 

weak students’ latest assignments being assigned to just one 

or two specific tutors who actually almost don’t have to mark 

any of them at all since most of these students will probably 

not submit the latest assignment. We thus may optionally add 

to the above algorithms the following extra step vi) between 

steps vi) and vii) for a fairer marking load among the tutors: 

FAIRER MARKING LOAD STEP: 

vi):  Let S0=
N

n 1
{sS: n(s) =0}, i.e. S0 is the set of 

students who didn’t submit any of the previous assignments. 

For all tT, with T ordered in any particular sequence, if |Ut 

|<Qt, randomly pick an s S0, then set Ut =Ut {s}, S0= S0{s} 

and U=U{s}. Otherwise process the next tT in the 

sequence. Repeat until S0= or U=. 

It is perhaps worth noting that this load reduction was 

significant for some markers when we actually applied this 

step vi) to units of large cohort of students. 

 

V. EXPERIMENTS AND EVALUATION 

For the evaluation of our reallocation methods, we first 

evaluate the algorithms on the synthetically generated data, 

and then apply them to the deliveries of real subjects of large 

number of students, typical of service units or first year 

foundation units. For a given student, the marks for the 

different assignments are most likely correlated. If n is the 

true mark for the n-th of the first m assignments for a given 

student, then the true mark for the (m+1)-th assignment for 

that student is likely to be 

m+1 = ( + )  +  + ,  

 = (1nm wnn) / (1nm wn),                             (17) 

where the mark m+1 is to be truncated to its domain range if 

necessary,  and  are two random numbers of unit Gaussian, 

and , ,  and  are constants. This is based on the 

observation that a student’s performance is generally 

consistent across several assignments. 

In a real case of a subject delivery, one has only the actual 

marks for the marked assignments, and will never be able to 

get any hidden “true” marks. One way to make up for this is 

to compensate the assessors’ biases on the actual marks and 

use these marks to substitute for the “true” marks. Hence for 

the actual marks {xn,s
(t)}s for a given n, the rescaling towards 

the overall mean xn,s = n + (xn,s
(t) n

(t)) n/n
(t) will be 

treated as the approximate true marks. One can then predict 

the marks for the next assignment via (17), allowing a 

random variation of say 10% through the choice of the 
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parameters there. After using n+1
(t) and n+1

(t) to generate the 

“actual” marks for the (n+1)-th assignment, we can then 

evaluate the difference between the sum of the actual marks 

with the sum of the true marks, which will constitute our 

predicted error. We will show that these predicted errors will 

indeed decrease when the tutor reallocation is employed. 

The complete reallocation algorithms and the simulation 

experiments are written in the form of a single program in 

PERL and the Box-Muller transform [15] is used to generate 

random normal distributions. Table I illustrates the typical 

reduction in the overall marking errors. Row A denotes the 

assessors 1-9, row K denotes the number of students a tutor 

will mark,  denotes the difference of the individual mean 

with the given =7, and likewise for  for the given =2. 

The table shows that the errors for the use of “new” tutors are 

consistently smaller than those for the use of “same” tutors in 

all four error indicators: predicted, linear, squared, and least 

squares. In fact, we first generate a total of 416 true marks for 

the 1st assignment, utilizing repeated domain truncation and 

rescaling via (1). Then we allocate them to the tutors 

according to their quota and using their own marking mean 

and deviation to generate the actual marks the students will 

get, applying truncations again if necessary. We then 

similarly generate the true marks for the 2nd assignment, 

assuming that they are usually of up to 10% variation from 

those for the 1st assignment via (17). We first measure the 

accumulated errors if the same tutors mark the same students 

for both the assignments, then we measure the errors after the 

tutors are reallocated for the marking of the 2nd assignment. 

We note that different samples, with or without truncations, 

with or without the rescaling of individual marker’s group of 

marks towards the prescribed mean and deviation, the results 

are very similar even though the actual numerical values will 

always differ due to the built-in intrinsic randomness. 

TABLE I: SAME WEIGHTING ON BOTH ASSESSMENT ITEMS 

A 1 2 3 4 5 6 7 8 9 

K 41 53 93 87 23 16 41 39 23 

 -.19 .63 .40 -.27 -.37 -.77 -.41 .05 -.20 

 .24 -.56 -.57 .03 .52 .83 -.04 .23 -.05 

Error Type Linear Error Squared Error Least Squares 

algorithm same new same new same new 

many-to-next .7920 .4397 1.090 .5087 1.082 .4880 

prediction .9936 .4019 1.310 .4828 1.292 .4587 

worst-paired-1st .7920 .4402 1.090 .5076 1.082 .4829 

prediction .9936 .3973 1.310 .4781 1.292 .4523 

 

We observe that even though the predictions in Table 1 are 

based on the estimated true marks, they are very reasonable 

indicators on the error measurement. We note that if K marks 

{xs} are to approximate marks {ys}, then (s |xsys |
p/K)1/p is 

the linear error for p=1 and is the squared error for p=2. If the 

approximation is in least squares, then the corresponding 

squared error is referred to as the least squares error. We also 

note that the data in Table I for such as A, K, , ,  and  

are made to resemble an actual unit delivery to which Table 

Ⅳ is also related. 

We now consider the case of 3 assignments with weight 

ratio 1:1:2, and with the same group of markers each 

assessing the same number of students as in Table I. We first 

randomly generate a total of 416 “true” student marks 

observing the normal distribution of =7 and =2, with 

possible truncation to the marks range and realignment 

towards the given  and . These are then allocated to the 

tutors according to the K field in Table I sequentially. We 

again generate the corresponding “true” marks for 

assignment items 2 and 3 by assuming that the true marks for 

item 2 is a 10% perturbation of those for item 1, and the true 

marks for item 3 is a 10% perturbation of the synthesised 

marks for items 1 and 2, according to (17). We then compare 

the resulting marks difference between the true total marks 

and the actual total marks under different circumstances. We 

fired 1000 allocation simulations for the different cases and 

the results are summarised in Table II, where column name 

SSS indicates that the students each have the same marker of 

all the 3 items, SR indicates that students for the 2nd item are 

reassigned new markers via the reallocation algorithms and 

the comparison is just between 1st two items, and SRR 

indicates that students for the 2nd item are reassigned markers 

from the marks in the 1st item, and they are again reassigned 

new markers according to the marks for both item 1 and item 

2. SRS and SSR denote that the markers have been 

reassigned for the 2nd and 3rd item respectively. The other 

controlling parameters are set to the default, and the shaded 

cells indicate the use of the WORST-PAIRED-FIRST 

method while the non-shaded data cells indicate the use of the 

MANY-TO-NEXT method. 

In order to compare errors across multiple assessment 

items of different weights, the linear errors (linear), squared 

errors (L2 norm) and least squares errors (LS) are all 

averaged against the total weight of the participating items. 

Table II convincingly shows that the marks errors will in 

general be cut into about half of what they would be when no 

reallocation is applied. Also, applying just the 2nd 

reallocation as in SSR has a very close effect of applying two 

consecutive reallocations as in SRR, because the weight of 

last item is more dominant and matches in total to the sum of 

the weights for items 1 and 2 together. 

TABLE II: SIMULATION ON THREE ASSESSMENT ITEMS 

Items SRR SSS SRS SR SSR 

Average 
(linear) 

.2220 .3945 .2763 .2437 .2394 

.2274 .3945 .2716 .2375 .2391 

Minimum 
(linear) 

.1482 .3527 .2387 .1902 .1861 

.1597 .3527 .2344 .1820 .1861 

Maximum 
(linear) 

.2964 .4406 .3583 .3243 .3144 

.2917 .4406 .3478 .3255 .3184 

Average 
(L2 norm) 

.3190 .5591 .3874 .3090 .3041 

.3254 .5591 .3809 .2989 .3036 

Minimum 
(L2 norm) 

.2030 .5028 .3325 .2330 .2343 

.2109 .5028 .3292 .2284 .2343 

Maximum 
(L2 norm) 

.4183 .6253 .5054 .4623 .4203 

.4424 .6253 .4963 .4497 .4583 

Average 
(LS) 

.2908 .5556 .3781 .2919 .2792 

.2967 .5556 .3708 .2793 .2784 

Minimum 
(LS) 

.1696 .4981 .3297 .2194 .2120 

.1790 .4981 .3251 .2148 .2120 

Maximum .3935 .6216 .4956 .4472 .4116 

International Journal of e-Education, e-Business, e-Management and e-Learning, Vol. 2, No. 3, June 2012

181



  

(LS) .4005 .6216 .4927 .4422 .4439 

 

Some desirable features such as reassigning markers as 

much as possible don’t easily allow meaningful quantified 

measurement, since it is not really possible to determine for 

instance a different marker is worth how much in other form 

of error measurement. The preservation of distribution 

shapes (consistent Gaussians) via such as (16) in the 

algorithm is another similar example. However in the next 

simulation, we show that there does exist room for closer 

marks approximation when error tolerance  in (16) in 

algorithm goes over the default value 0. For this purpose, we 

generated the “true” marks for item 1 similar to Table II, and 

removed the randomness of 10% for item 2. We allowed  to 

vary between 0 and 1 at the step size .01. We found that there 

often exists such >0 which leads to better approximation 

(via the L2 norm) to the true marks. This brute-force 

searching is done for 250 randomly generated cases, and we 

found for the best improvement the average  is 0.1896 with 

the maximum (within [0, 1]) being 0.96. Other results are 

summarised in Table III. 

TABLE Ⅲ: SIMULATION ON TWO ITEMS FOR CONSISTENT GAUSSIANS 

Errors and  

Tolerance  

Error 
Type 

Linear 
Error 

L2 
Norm 

Least 
Squares 

 = 0 
average .2453 .3104 .2939 

maximum .3496 .4558 .4360 

Best case for 

0    1 

average .2370 .2988 .2833 

maximum .3206 .4336 .4301 

Improvement 
percentage 

average 3.396% 3.764% 3.599% 

maximum 18.09% 15.51% 16.00% 

 

We now apply our tutor reallocation algorithm to an actual 

unit consisting of, among others, 2 assignments and a final 

exam. Before measuring the accumulated errors, we first 

remove those incomplete samples (e.g. students missing one 

or more assessment items) and remove the extremely 

poor–performing students too because their marks are more 

likely to be “irregular” or even “non-truthful”. Hence we 

conduct our evaluations on the students of complete records 

and in the groups of the exam marks exceeding 20, 25, and 35 

respectively, out of the full mark 50. The largest of these 

groups has 290 students in total. Since marking consistency 

and fairness is largely in terms of the relative marks [11], it 

also makes sense to measure the errors in the least squares. In 

particular, when K marks {xs} approximate the marks {ys}, 

we first find  and  such that {xs+} is closest to {ys} in 

the Euclidean distance, and we could then also treat s 

|xs+ys |/K as the average linear error. Table Ⅳ lists the 

least squares errors in the 2nd half, and lists the average linear 

errors in the 1st half (rescaled to the same level for 

comparison). It shows that the errors are being reduced 

across the board when assessment items 1 and 2 are added 

together, thus compensating each other’s biases. 

TABLE Ⅳ: ERRORS IN COMPARING WITH THE EXAM 

Exam 20 25 35 20 25 35 

Item 1 5.4516 4.5484 2.8278 5.8896 5.0287 2.8624 

Item 2 4.3467 3.5108 2.7951 5.9888 4.6887 2.7951 

Items 1+2 4.0604 3.3016 2.4051 5.7197 4.6313 2.7597 

We finally note that the motivation to develop and analyse 

our tutor reallocation methodology comes from an earlier 

observation in teaching a database unit where over 20% 

marks difference were observed for apparently the same 

submission, partly due to a degree of subjective assessment 

on the design quality. This has thus led to the actual 

implementation of the above reallocation algorithms which 

have been by now routinely utilised for the 2 units of large 

student numbers for 3 consecutive semesters. 

 

VI. CONCLUSIONS 

We have proposed an assessor reallocation scheme, in the 

form of Worst-Paired-First algorithm and its variants, to 

objectively compensate the subjective marking biases by 

reallocating assessors to suitably different students for a new 

or next assessment item, by estimating all assessors’ potential 

biases from the previously marked multiple assessment items. 

The simulations, along with the implementation on the actual 

university subjects, have demonstrated the convincing 

improvement by the scheme on the consistency and fairness 

of the assessments. This scheme offers for the 1st time a 

universal and tangible methodology to improve objectively 

the overall fairness on any sequence of student assessments. 
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