
 
 

 

  
Abstract—This paper describes part of a project about 

Learning-by-Modeling (LbM). The ideas of complexity are 
increasingly becoming an integral part in understanding 
natural and social sciences. Previous research indicates that 
involvement with modeling scientific phenomena and complex 
systems can play a powerful role in science learning. Some 
researchers argue with this view indicating that models and 
modeling do not contribute to understanding complexity 
concepts, since these increases the cognitive load on students.  
This study investigates the effect of different modes of 
involvement in exploring scientific phenomena using a 
computer agent-based modeling tool, on students’ 
understanding of complexity concepts. Quantitative and 
qualitative methods are used to report about 121 freshmen 
students that engaged in participatory simulations about 
complex phenomena, showing emergent, self organized and 
decentralized patterns. Results show that LbM plays a major 
role in students' concept formation about complexity concepts. 
 

Index Terms—Agent Based Modeling, Complex Systems, 
Learning by Modeling, Mental Models. 
 

I. INTRODUCTION 
Understanding the behavior of complex systems has 

become a focal issue for scientists in a wide range of 
disciplines. For the last century, substantial theoretical 
developments led to a shift in perspective allowing scientists 
to study phenomena and processes in the world focusing on 
aspects, interrelationships and processes that were 
overlooked by traditional Science. In the last decades, the 
basic paradigm of the novel approach has evolved into 
several theoretical and methodological branches, e.g., 
Cybernetics [1]; General Systems Theory [2]; System 
Dynamics [3]; Chaos Theory [4]; Complexity [4]. The 
impressive theoretical apparatus, complemented with the 
development of sophisticated computer tools, is nowadays a 
powerful means used by scientists to "dive into complexity" 
[5]. 

The inquiry about phenomena in the world adopting a 
systemic perspective is a challenging intellectual enterprise 
for scientists and students of science as well [6]. Learning 
about concepts in complex systems is greatly aided by 
interactive simulations and models.  Research indicates that 
learning through observation do not necessarily lead to 
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strong intuitions or deep understanding of systems [18]. For 
example people observed bird flocks for thousands of years 
before anyone suggested that flocks are leader-less, and 
people participate in traffic jams without much 
understanding of what cause the jams, such phenomena may 
be regarded as complex systems. Observation and 
participation are not enough; people need a richer sense of 
involvement with systems in order to understand them [5], 
[9], [10], [14], [16], [21]. Modeling can provide students with 
the power to understand and explore systems that were 
previously difficult to trace and predict their behavior, new 
techniques that help to learn important concepts on complex 
systems, to generate relevant questions, theories and 
hypothesis about phenomena, and to build and run models 
related to their theories [7], [12], [15], [19], [20]. 

Despite the utilization of new learning approaches with 
models, students experience difficulties in learning concepts 
relevant to understanding complex systems currently taught 
in existing science courses – student thinking may be 
counter-intuitive or might conflict with the scientific models, 
and the learning ideas concerning emergence or stochastic 
processes are difficult because of difference with teleological 
beliefs, where students tend to think of systems having 
centralized control [8], [13], [14], [20]. Hmelo-Silver and 
Pfeffer (2004) argue that the characteristics of complex 
systems make them difficult to understand, since they are 
comprised of multiple levels of organization that often 
depend on local interactions (the causes and effects are not 
obviously related); also it requires that students should 
construct a network of concepts and principles about the 
phenomena with complexity and their interrelationships [14], 
[17], [20]. Some researchers argue that modeling did not 
contribute a lot in understanding complexity since it 
increases the cognitive load on students (see [11]). 

This study focused on the effect of different modes of 
involvement in exploring a scientific phenomena using 
computer modeling tools, on students’ understanding of 
complexity: from simple observation, through different 
stages of intervention and manipulation. It is part of a more 
comprehensive study pursuing the goals: (1) to study the role 
of modeling in the learning process of complexity and 
complex systems in the natural and artificial worlds; (2) to 
examine the contribution of different modes of involvement 
in the modeling process (e.g., observation and explanation, 
intervention and manipulation, programming and 
development) to the students’ understanding of complexity; 
(3) to examine the effect of the level of complexity and 
properties (e.g., emergence, self-organized …) of the systems 
being manipulated on the student’s learning; and (4) to study 
the evolution in time of the students’ mental models of 
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complexity as a function of the different variables (e.g., 
modes of involvement; level of complexity) of the system 

under study. 

 
TABLE 1. CATEGORIZATION OF CONCEPTS RELATED UNDERSTANDING COMPLEX SYSTEMS 

 
Parameters Clockwork component coding Complexity component coding 
 
Emergence 
Does a pattern emerging? 
Is there a difference between agents and 
system? 
Is there movement of the agents within the 
system? 
 
 

 
 
Agents act in isolation. 
Simple stepwise description. 
Explicit description of non-changing 
system. 
 
 

 
 
Local interaction between agents. 
System structure exhibits a more stable behavior, 
yet all agents have the potential to be replaced by 
other similar independently operating agents. 
Identification of pattern formation as the agents 
come together to form a system. 
 

Self-organization 
Are there feedback loops within the 
system? Do they affect the outcome? 
How do agents behave before they are part 
of the system? 
 

 
Small causes cause small effects, large 
causes cause large effects. 
Effects are functions of causes 
There is no randomness or chance in 
agents' action. 
One thing leads to another. 
Agents' actions are predictable. 
 

 
Small causes can produce large effects. 
System organizes itself based on the interactions of 
the agents, structure is never certain. 
Despite agent's movements, the system persists in a 
self-organization fashion. 
Effects are not straightforward functions of causes.
 

Decentralization 
How systems are governed? 
What initiates the formation of the system? 

 
Central control and deterministic single 
causality. 
Control/order is external. 

 
Agent's actions are independent of each other, 
despite that they all operate under the same rules. 

II. METHOD 

A. Subjects 
Participants are 121 undergraduate students (ages ranging 

from 18 to 20 years old) from the science department at 
Al-Quds University in Jerusalem, divided into four groups by 
the kind of involvement in working with models: observation, 
exploration, manipulation, and model-development modes.  

The students were selected based on their scientific 
background, all have done the tawjehi exam as required by 
the ministry of education for the scientific track, and they are 
all studying first year compulsory science courses in the 
faculty of science. 

B. Research Instruments 
 (1)The learning environment comprising two 

components: 
•  Net Logo, a specialized program developed at 

Northwestern University for agent-based modeling and 
for learning and understanding complex systems [20]. 

•  Tasks and activities in which students run NetLogo 
models and are requested to perform tasks with the 
models.  

(2) Data collection tools included: 
•  Pre-test comprising general background and 

demographic information (e.g., major area, gender) and 
four questions dealing with complexity concepts such 
as emergence, self-organization and decentralization.  

•  Structured observation and data forms. 
•  "Mental model worksheet" focusing on students' 

complex-system-mental-model (CSMM), completed by 
the end of each activity. 
 

•  Structured interview, focusing on students' 
understanding and reasoning about emergence,  

•  Self-organization and decentralization. 

C. Procedure 
All students attended a two hours introduction lesson to the 

Net Logo environment. 
The study was carried in four stages:  
(1) Pre-test. 
(2) Treatment in four different modes. 

•  Observation group: in 2 sessions of 90-minutes students 
were introduced to two models (two levels of 
complexity), requested to observe agents interactions, 
and to complete the CSMM worksheet. 

•  Exploration group: in 2 sessions of 90-minutes students 
were introduced to two models (two levels of 
complexity), were given an initial set of conditions for 
the system followed by a final set of conditions in which 
one or two parameters were changed (e.g., change in a 
variable-slider or a switch) while the others remained 
constant. After each model students were interviewed 
and requested to complete the worksheet.  

•  Manipulation group: in 2 sessions of 90-minutes 
students were introduced to two models (two levels of 
complexity) using NetLogo. They were asked about 
how the system would change if the system variables 
were altered, and even allowed to use NetLogo 
commands. The students then manipulated the system 
variables according to the interviewer’s questions, 
explained their observations of the system's behavior 
and compared these with their initial predictions. After 
each model students completed the worksheet.  

•  Development and Design group: students were 
introduced to the Netlogo programming environment 
(48 hours), in order to have the ability to construct the 
learning models. After each model students were asked 
to complete the worksheet.  

 (3) Interview after treatment: students were interviewed 
for their CSMM; all responses were video/audio 
taped.  
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 (4) Post-test: (same as pre-test).  

D. Scoring 
The coding scheme was based on the categorization 

defined by Jacobson (2001) [8], shown in Table 1. Students' 
answers were coded as non-reductive if these referred to a 
complexity-related matter (i.e. the whole is greater than the 
parts). Otherwise, if there was evidence of a stepwise 
approach to the explanation, the answer was coded as 
reductive (i.e. agents act in isolation). Jacobson (2001) refer 
to the reductive way of thinking as "deterministic and 
clockwork order".  

 

III. RESULTS 

A. Quantitative Analysis 
Student’s responses were coded in terms of the various 

types of component beliefs reflected in the answers (Table 3). 
TABLE 2. STUDENT'S UNDERSTANDING COMPLEX SYSTEM

*Significance at α 0.01 

  Pretest Posttest 

Group (N) M SD M SD 

Observation 29 7.72 1.98 8.52* 2.58 

Exploration 33 7.15 1.95 7.85* 1.97 

Manipulation 28 7.5 1.64 8.57* 2.43 

Development 31 7.68 1.74 9.42* 2.35 

The results in Table 2 and Fig. 1 show that there is an 
increase in students’ understanding of complexity concepts 
in all four groups (observation, exploration, manipulation, 
and development and design). Significant difference was 
observed (paired-samples t test) between the pre-test and 
post-test. 
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Fig. 1 – Students’ understanding complex system 

Understanding of complexity concepts (Emergence, 
Self-organization and Decentralization) is shown in Table 3. 
As expected, students in the development and design group 
identified more complexity concepts than the other groups. A 
general log-linear analysis was conducted to examine the 
differences between the groups in their perception of the 
concepts, showing significant relationship between the 
modes of involvement and understanding complexity 
concepts (χ2 (df = 25) = 137.643, p < .001). Concerning the 
tasks complexity level (complicated vs. complex models) 
results showed significant relationship between the different 

modes of involvement and understanding complexity 
concepts for the complicated model (χ2 (df = 25) = 85.216, p 
< .001) and for the complex model (χ2 (df = 25) = 120.128, p 
< .001). 
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Fig. 2. Students’ responses when understanding systems with the different 

complexity concepts and levels for the different modes of involvement 

Table 3 and Fig. 2 present the frequencies and percentages 
of the students’ responses on the different complexity 
concepts (emergence, self-organization and decentralization) 
for the four groups (observation, exploration, manipulation 
and design) with different levels of complexity. Chi-square 
tests were done to check these frequencies for significance, 
results show a significant relationship between the different 
modes of involvement and the different complexity concepts 
as follows: (a) Students largely favor to choose the 
clockwork model when they were asked questions regarding 
emergence (χ2 (df = 3) = 20.841, p < .001), in examining the 
observed cell frequencies from Table 3; it shows that that the 
observation group got the highest frequency (60%) in 
favoring the clockwork model, on the other hand the design 
group showed high response in choosing the complex model 
on emergence (66%) followed by the manipulation group 
(65%) followed by the exploration group (60%) and finally 
the observation group (40%), (b) Students largely favor to 
choose the clockwork model when they were asked questions 
regarding self-organization (χ2 (df = 3) = 73.683, p < .001), 
in examining the observed cell frequencies from Table 3; the 
observation group showed the highest frequency (67%) in 
favoring the clockwork model, on the other hand the design 
group showed high response in choosing the complex model 
on self-organization (83%) followed by the manipulation 
group (54%) followed by the exploration group (53%) and 
finally the observation group (32%), and (c) Students largely 
favor to choose the clockwork model when they were asked 
questions regarding decentralization (χ2 (df = 3) = 21.906, p 
< .001), in examining the observed cell frequencies from 
Table 3; the observation group showed the highest frequency 
(68%) in favoring the clockwork model followed by the 
manipulation group (54%) followed by the exploration group 
(58%) followed by the design group (48%) and finally the 
manipulation group (39%), on the other hand the 
manipulation group showed high response in choosing the 
complex model on decentralization (61%). 
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Table 4 and Fig. 3 present the frequencies and percentages 

of the students’ responses on the different types of questions 
given during the activities for the four groups (observation, 
exploration, manipulation and design). A chi-square test 
were done to check these frequencies for significance, Thus it 
can be concluded that there are significant differences in the 
frequency on the types of questions regarding understanding 
complexity concepts for the different types of involvement, 
and the results show that: (a) Students largely in favor to 
choose the clockwork model when they were asked about the 
difference between agents and systems (χ2 (df = 3) = 16.7, p < 
0.01), in examining the observed cell frequencies from Table 
4; it shows that the observation group got the highest 
frequency (58.6%) in favoring the clockwork model, on the 
other hand it can be concluded that the design group showed 
high response in choosing the complex model on the same 

question (74.2%) followed by the manipulation group 
(67.9%) followed by the exploration group (65.2%) and 
finally the observation group (41.4%), (b) Students largely in 
favor to choose the clockwork model when they were asked 
about the agents behavior (χ2 (df = 3) = 21.8, p < 0.01), in 
examining the observed cell frequencies from Table 4 it 
shows that the observation group got the highest frequency 
(58.6%) in favoring the clockwork model, on the other hand 
it can be concluded that the design group showed high 
response in choosing the complex model on the same 
question (79%) followed by the manipulation group and the 
exploration group (69.6%) and finally the observation group 
(39.7%), (c) Students largely in favor to choose the complex 
model when they were asked about the internal and 
environmental feedback loops (χ2 (df = 3) = 35.6, p < 0.01), 
and (χ2 (df = 3) = 39.3, p < 0.01) respectively, in examining 
the observed cell frequencies from Table 4 it can be 
concluded that for the internal feedback loops the design 
group showed high response in choosing the complex model 
(85.5%) followed by the observation group (51.7%) followed 
by the exploration group (40.9%) and finally the 
manipulation group (38%), and for the internal feedback 
loops the design group showed high response in choosing the 
complex model (83.9%) followed by the manipulation group 
(53.6%) followed by the exploration group (47%) and finally 
the observation group (29.3%), (d) Students largely in favor 
to choose the complex model when they were asked about the 
way that systems are governed (χ2 (df = 3) = 22.2, p < 0.01), 
in examining the observed cell frequencies from Table 4 it 
can be concluded that the manipulation group showed high 
understanding for the complexity concepts (75%) followed 
by the design group (53.2%) followed by the exploration 
group (42.4%) and finally the observation group (32.8%). 

 
TABLE 3. STUDENTS’ FREQUENCIES AND PERCENTAGES ON COMPLEXITY CONCEPTS TO ALL GROUPS WITH DIFFERENT LEVELS OF COMPLEXITY 

(CD: COMPLICATED AND CX: COMPLEX; ** P < 0.01) 

      Emergence** Self-organization** Decentralization** 

      Complexity Level Frq (%) Complexity Level Frq (%) Complexity Level Frq (%) 

 Group Model (N) CD CX** Total** CD** CX** Total** CD** CX** Total**

Observation 
Clockwork 29 37 (64) 33 (57) 70 (60) 58 (67) 45 (52) 103 (67) 40 (69) 38 (66) 78 (68)

Complex 29 21 (36) 25 (43) 46 (40) 28 (32) 42 (48) 70 (32) 16 (28) 20 (34) 36 (32)

Exploration 
Clockwork 33 37 (56) 16 (24) 53 (40) 38 (38) 55 (56) 93 (47) 22 (33) 54 (82) 76 (58)

Complex 33 29 (44) 50 (76) 79 (60) 60 (61) 44 (44) 104 (53) 44 (67) 12 (18) 56 (42)

Manipulation 
Clockwork 28 22 (39) 17 (30) 39 (35) 41 (49) 37 (44) 78 (46) 23 (41) 21 (38) 44 (39)

Complex 28 33 (59) 38 (68) 71 (65) 43 (51) 47 (56) 90 (54) 33 (59) 35 (63) 68 (61)

Design Clockwork 31 26 (42) 13 (21) 39 (34) 15 (16) 16 (17) 31 (17) 32 (52) 26 (42) 58 (48)

Complex 31 31 (50) 44 (71) 75 (66) 77 (83) 77 (83) 154 (83) 28 (45) 36 (58) 64 (52)

B. Qualitative analysis 
An examination of students’ responses indicated 

additional qualitative differences between the different 
groups. A descriptive analysis of students’ responses 
provided that also illustrates the coding procedure. Here is a 

portion of the answer given by one of the undergraduate 
students, Salem (all names have been changed) to the 
question: “How traffic jams occur? “ 

Salem: "First of all you might have an accident in the road 
or the road is not good to let drivers pass in a regular way…" 

Interviewer: “ok, suppose we have no accidents and the 
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Fig. 3. Students’ responses when understanding systems with different 

complexity levels for the different modes of involvement 
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road is good, is there any chance to a have a traffic 
jam?”  

Salem: "Yes, let’s say if we have a traffic light…" 
In this answer, the student’s response has been coded as 

‘reductive or clockwork’ because it referred to a centralized 
control and deterministic single causality (i.e. the references 
to ‘accidents, road is not good, and traffic light’). 
 

IV. CONCLUSIONS 
Understanding complex systems is the basis for much 

inquiry in science education. This article reports on a study 
about the interaction between modes of learning with an 
agent-based modeling tool and the understanding of 
complexity concepts. The implementation of such an 
instructional approach in the curriculum would have many 
benefits for learners, such as interdisciplinary learning 
allowing to see common patterns across traditionally separate 
fields, new ways of thinking (systems thinking and 
decentralized thinking), exploration of tools to think with, 
and construction of models linking between local causes and 
global behavior. 

By introducing this new perspective (LbM) using agent 
based modeling for learning complexity  and emergent 
phenomena, science learning will be more motivational and 
truthful, more inclusive and accessible to the great majority 
of students. 

In addition, this study's results have clear implications for 
the design of learning environments that can support learning 
about complex systems. 
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